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FOREWORD 

In the complex and multifaceted field of hydrology, the verification of streamflow forecasts 
plays a crucial role in understanding and predicting water movement within river basins.  

Flood preparedness and emergency response often prioritize the verification of river stage or 
flow height forecasts, given their direct impact on critical thresholds and timing of flow peaks. 
This publication provides comprehensive guidelines focused on the verification of forecasted 
streamflow, or discharge, at designated locations. It aims to provide detailed methodologies 
and considerations for streamflow forecast verification. 

Verification of forecasts plays a vital role by providing several key benefits: it provides 
operational insight by highlighting the strengths, weaknesses and uncertainties of the forecasts 
and their systems; it guides system enhancements; and ultimately it enables more informed 
and effective decision-making.  

Highlighting the uncertainty of forecasts is particularly important: it must be remembered that 
all forecasts, whether deterministic or probabilistic, contain uncertainty and errors that form an 
essential part of the forecast information. Verification of forecasting is therefore needed to 
increase the understanding by forecasters of the quality of these forecasts, and to improve the 
way the forecasts are communicated to end users. 

Through these functions, verification supports the continuous improvement and reliability of 
forecasting systems. 

While the subject is technical, the proposed guidelines are designed to introduce verification 
concepts to beginners and assist practitioners in evaluating their operational system. They 
should help the community select appropriate verification metrics and tools to assess the value 
of their operational forecasts. 

Recognizing the diversity of hydrological forecast users, their varying risk perceptions, and the 
differing predictive skills across hydroclimatological regions, this publication avoids a one-size-
fits-all approach. Instead, it provides general guidance, key points, case studies and examples 
to help users tailor verification tasks to their specific needs.  

We hope this publication serves as a valuable resource for professionals dedicated to 
improving the accuracy and reliability of hydrological forecasts, ultimately contributing to more 
informed decision-making and enhanced flood preparedness, and supporting the Early 
Warnings for All (EW4All) initiative. 

 

Prof. Celeste Saulo 
Secretary-General 

 



PREFACE 

The verification of hydrological forecasts is critical for retrospectively assessing the 
performance of operational flood forecasting systems. This topic holds significant interest for 
members of the hydrological forecasting community as it serves as a benchmarking for 
evaluating the quality of their forecasts. Though specific to the hydrological sector, these 
guidelines provide an additional element contributing to the Early Warnings for All (EW4All) 
initiative, allowing Members to advance in their hydrological forecasting capabilities.  

This activity was initiated in 2018 under the former Working Group on Hydrological Services 
(WGHS) of Regional Association II, with S. V. Borsch, A. V. Khristoforov, and E. A. Leonteva, 
from the Russian Federation, who embraced the initial effort of drafting an overview document. 
Following the WMO restructuring, the Standing Committee on Hydrological Services (SC-HYD) 
took over the development of these guidelines. 

As President of the Commission for Weather, Climate, Hydrological, Marine and Related 
Environmental Services and Applications (SERCOM), I extend my deepest gratitude to all 
contributors involved in developing these guidelines, especially the authors, Julie Demargne 
(HYDRIS hydrologie), Jan Simon Verkade (Deltares) and Dong-Jun Seo (University of Texas, 
Arlington). The commitment and leadership of SC-HYD members Reggina Cabrera and Paolo 
Reggiani in supervising the drafting process have been instrumental during this process.  

I would like to also thank James Bennett, Durga Lal Shrestha and David Robertson, who 
contributed case studies and examples. 

The authors would like to thank the United States National Weather Service Middle Atlantic 
River Forecast Center in State College, Pennsylvania, West Gulf River Forecast Center in Fort 
Worth, Texas, and Office of Water Prediction in Silver Spring, Maryland, for making available 
the various datasets used in this report. Some contributions to this publication are based on 
materials supported in part by the National Oceanic and Atmospheric Administration (NOAA) 
Climate Program Office under grant NA15OAR4310109 and Joint Technology Transfer Initiative 
Program under grants NA17OAR4590174, NA17OAR4590184 and NA16OAR4590232, the 
National Weather Service Cooperative Program for Operational Meteorology, Education, and 
Training Program Subaward No. SUBAWD000020 and the National Science Foundation under 
grant CyberSEES-1442735. 

These guidelines benefited from technical reviews by the following experts: 

• Thomas Pagano (Australian Bureau of Meteorology) 

• James Brown (Hydrologic Solutions Limited, United Kingdom of Great Britain and 
Northern Ireland), for review of the EVS computational example 

• Thomas Nipen (Norwegian Meteorological Institute), for help with and review of the verif 
computational example 

• Francesco Laio (Department of Environmental Engineering, Land and Infrastructure 
Management (DIATI), Polytechnic of Turin, Italy) 

• Marc Philippart, Annette Zijderveld (Rijkswaterstaat, Kingdom of the Netherlands) and 
Maarten Smoorenburg (Deltares, Kingdom of the Netherlands) for reviewing the 
Rijkswaterstaat operational verification case study 

• Justin Robinson and colleagues (Australian Bureau of Meteorology) for reviewing the 
section about the Bureau’s Performance Analysis Tool 

• Dominic Roussel and Simon LaChance-Cloutier (Québec Ministry of the Environment, the 
Fight Against Climate Change, Wildlife and Parks, Canada) for reviewing the section 
about the Système de Prévision Hydrologique 
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• James Bennett, Durga Lal Shrestha and David Robertson for the Commonwealth 
Scientific and Industrial Research Organisation (CSIRO, Australia) verification case study 
for ephemeral streams 

• Valeria Koli (Russian Federal Service for Hydrometeorology and Environmental Monitoring 
(ROSHYDROMET), Russian Federation) 

• Yashar Falamarzi (Climate Research Institute (CRI), Atmospheric Science and 
Meteorological Research Centre (ASMERC), Islamic Republic of Iran) 

• Jihoon Park (Nakdong River Flood Control Office (NRFCO), Republic of Korea) 

Finally, I would like to extend my deep appreciation to the members of the WMO Standing 
Committee on Data Processing for Applied Earth System Modelling and Prediction (SC-ESMP), 
the WMO Expert Team on Operational Hydrological Prediction Systems (ET-OHPS) and the WMO 
Research Board for the final review of this publication, and to the WMO Secretariat (Hwirin 
Kim, Giacomo Teruggi and Rokhaya Ba) for their support in developing this activity. 

 

Ian Lisk 

President, Commission for Weather, Climate, 
Hydrological, Marine and Related 

Environmental Services and Applications 
(SERCOM) 

 



CHAPTER 1. INTRODUCTION 

Accurate hydrological forecasts are essential to safeguarding lives and properties, improving 
the quality of life, enhancing the economy and protecting the environment. To that end, all 
countries invest in and operate some form of hydrological forecasting infrastructure and 
provide forecast products and services derived therefrom. Hydrological forecasts serve a wide 
range of users. At one end, there are emergency managers who may be faced with the 
possible evacuation of large communities within a short amount of time and water managers 
who must operate complex systems of reservoirs and pipelines to supply water while 
minimizing risks from flooding or drought. At the other end, there are individual residents and 
motorists who may have to take immediate action to avoid fast-rising waters or flooded 
roadways. 

With continuing human-made changes to land cover and the environment as well as climate 
change, hydrological forecasting is an increasingly important yet challenging enterprise (NRC, 
2001). It is widely recognized that hydrological verification has a larger role to play in 
improving the accuracy and quality of hydrological forecasts and allowing for more effective 
use of the forecast information in users’ decision-making (Welles et al., 2007). For many 
practitioners of hydrological forecasting, however, hydrological verification remains largely 
outside of routine hydrological operations. The goal of this publication is to help promote the 
practice of hydrological verification by providing the community with a practical guide for 
initiating and conducting verification. 

Verification refers to the process of comparing the forecast of interest with the verifying 
observation to assess the accuracy and quality of the forecast. Verifying observation refers to 
the observation with which one may ascertain the occurrence or non-occurrence of the forecast 
event or how good the forecast is. Accuracy refers to the representative quantitative measures 
of forecast error. The measures may vary depending on the type of the forecast (for example, 
single-valued or probabilistic, categorical or continuous). Quality refers to the collective 
characteristics, or attributes, of the forecast that translate into skill useful for decision-making. 
Skill refers to statistical measures of forecast accuracy relative to some reference such as a 
climatological forecast. 

To the producers of hydrological forecasts, verification serves two main purposes. The first is 
to cost-effectively improve the accuracy and quality of the forecast by objectively guiding 
systematic improvement of the end-to-end forecast process and the forecast systems used 
therein. The forecast process may include, but is not limited to, observing, modelling, 
calibration, data assimilation (DA), analysis, prediction and postprocessing. The second is to 
communicate the accuracy, quality, skill and information content of the forecast based on past 
performance to the users of the forecast information so that they may use the real-time 
forecast more effectively for user- or application-specific decision-making. To the users of the 
forecast, verification information allows calibration, be it explicit or implicit, of the user’s 
decision support and decision-making systems and processes, which increases the utility and 
value of the forecast information. 

Hydrological verification is rooted in weather forecasting and verification of weather forecasts. 
As with any forecast verification, the science and practice of hydrological verification draw 
heavily from statistics, probability theory and information theory. Whereas many publications 
and other resources exist on verification science, the literature is limited on practical guidance 
for initiating hydrological verification in the real world. Despite the long-standing, widespread 
and often very sophisticated use of statistics, applied probability and stochastic processes in 
hydrology and water resources engineering, many practising hydrologists and civil engineers 
may find the language of verification too unfamiliar to readily explore its content for possible 
adoption and practice.  

This publication is an effort to help bridge such gaps and facilitate the practise of hydrological 
forecast verification in the real world. Specifically, it is aimed at providing both the producers 
and the users of hydrological forecasts with a practical introductory guide for hydrological 
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forecast verification, including the science, logistics, and freely available tools and resources. 
Key concepts are presented to elicit intuitive understanding in the context of hydrological 
applications in the real world. Wide-ranging real-world examples are provided for hands-on 
verification with step-by-step instructions. With these guidelines, readers will be able to 
replicate the results using the data, tools and resources identified herein and start practising 
hydrological verification using their own. 

Hydrological forecasting is subject to large uncertainties in the meteorological forecasts used 
as input and in the hydrological, hydraulic and water management models used to describe the 
movement and storage of water. Hydrological forecasting also covers multiple scales; the 
space–time scale over which the predictive skill and uncertainty must be captured and 
represented with physical-dynamical and statistical consistency is often very large, ranging 
from local to continental scale in space and from minutes to decades in time. With increasing 
urbanization and interconnectedness in commerce and people’s lives, there is also an ever-
growing and universal need for increased spatio-temporal specificity and lead time in 
hydrological forecasts. Higher-resolution hydrological forecasts with longer lead times, 
however, can only be provided with increased uncertainty. Operational hydrological forecasts 
nevertheless must serve a wide range of applications that require varying levels of forecast 
information and a broad spectrum of users with varying levels of risk perception and tolerance. 

In working towards addressing the collective challenges and needs expressed above, the 
ensemble approach has emerged in recent years as the most practical one for operational 
hydrological forecasting (Wells, 2017). Ensemble forecasting is well suited for processing 
weather and climate forecasts, which are inherently uncertain, and provides an estimate of 
predictive uncertainty which conveys a measure of confidence in the forecast, thereby allowing 
for user-specific risk-based decision-making. With the use of longer-range ensemble forcing 
forecasts, hydrological ensemble forecasting may extend lead time (Kim et al., 2018), and 
multimodel ensemble forecasting may improve forecast accuracy, as premised by information 
theory (Georgakakos et al., 2004).  

Single-valued (for example, deterministic) forecasts may be considered a special case of 
ensemble forecast in which only a single member exists in some representative form such as 
mean or median. Therefore, the mechanics of verifying ensemble forecasts encompass those 
of verifying single-valued forecasts. One may hence use ensemble verification tools for 
verification of single-valued forecasts if necessary. For example, one may calculate the root 
mean squared error (RMSE) of single-valued forecasts by calculating the RMSE of ensemble 
mean forecasts. One may also calculate the mean absolute error (MAE) of single-valued 
forecasts by calculating the mean continuous ranked probability score (CRPS) (see Chapter 4 
for more information about the measures mentioned above). This does not mean, however, 
that one may interpret the resulting verification statistics for single-valued forecasts as if they 
are for ensemble forecasts. 

Most probabilistic verification measures apply to all types of probabilistic forecasts. Most 
probabilistic forecasts are in the form of ensemble forecasts with ensemble members 
representing outcomes that are equally likely to occur, or probability distribution forecasts with 
empirical or parametric probability distributions describing the range and relative likelihood of 
possible outcomes. Depending on the metric, the mechanics of performing verification and 
interpreting the results differ by varying extents between ensemble forecasts and probability 
distribution forecasts. Given the widespread use and increasing adoption of hydrological 
ensemble forecasting, this publication deals primarily with ensemble forecasts for probabilistic 
verification and makes a distinction whenever necessary between the two to avoid potential 
confusion.  

1.1 Scope and approach 

These introductory guidelines are focused on verification of streamflow, or discharge, at 
specific locations and deals with verification of input forcing forecasts from numerical weather 
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prediction (NWP) only to a very limited extent. To many users, verification of river stage, 
rather than discharge, is often of greater and more immediate interest for flood preparedness 
and emergency evacuation purposes. Therefore, operational streamflow verification should, in 
general, include both stage and discharge forecasts. Logistically, verification of stage forecast 
is effectively the same as verification of discharge forecast, and to verify stage forecast one 
may follow the steps described in this document for verification of discharge. 

Stage–discharge relationships, which are described by rating curves, are heavily modulated by 
channel geometry and hydraulic properties at and near the gauging station. Hence, stage 
forecast is not very reflective of the predictive skill of the forecast system and predictability of 
the hydrometeorological and hydrological processes over the drainage area. In addition, 
verification of stage forecast does not, in general, allow comparative assessment of forecast 
quality, including uncertainty propagation, throughout the river basin in reflection of the 
movement and storage of water from upstream to downstream locations through channels, 
reservoirs and outlet structures. If one is interested in using verification to aid systematic 
improvement of forecast quality for the entire hydrological system of interest, it is hence 
necessary to verify streamflow forecasts. Stage verification, however, represents location-
specific hydraulic translation of streamflow forecast quality via rating curves or hydraulic 
models. 

The above scope means that this publication does not address verification of flash floods or 
any other predictands of importance in hydrological forecasting other than streamflow, such as 
precipitation, temperature, snow water equivalent and other variables. The intent is that the 
information, resources and tools shared herein will also be useful, directly or indirectly, for the 
verification of other variables and phenomena of interest for hydrological forecasting. 

In addition, this publication does not address the assessment of utility (Benjamin and Cornell, 
1970) or value of streamflow forecasts. Readers interested in the assessment of the 
socioeconomic value of hydrological services derived from hydrological forecasts are referred 
to Valuing Weather and Climate (WMO-No. 1153) and Laugesen et al. (2023). Assessing the 
socioeconomic value of streamflow forecasts requires relevant decision support systems and 
cost–loss models (Murphy, 1969; Zhu et al., 2002; Laio and Tamea, 2007). The former 
translates the forecast information to application-specific decisions. The latter translates 
decisions to user-specific and/or societal value. The cost–loss models for streamflow forecasts 
are often highly nonlinear and require consideration of a wide range of spatio-temporal scales. 
For example, the cost associated with not taking any precautionary action for a high-flow event 
is usually far greater if the observed peak flow exceeds the critical flood stage than if it crests 
just below that stage. For the operation of a multipurpose reservoir for a heavy rainfall event, 
the cost of precautionary action and the loss from inaction may conflict with the actions 
needed to optimize flood control and water supply, and there may also be conflict between the 
interests of residents upstream of the reservoir and those downstream. Often, the largest 
socioeconomic loss from a flood event is caused by widespread inundation, particularly in 
urban areas. If inundation forecasts are not available from hydrodynamical models (Noh 
et al., 2019), it is necessary to develop inundation maps based on location-specific streamflow 
forecasts (NWS, 2012). As may be seen from the discussion above, models for decisions, cost 
and loss can be rather complex and may require multidisciplinary expertise and resources. 
Regardless of the complexity, the ensemble approach is well-suited for assessment of the 
value of streamflow forecasts in that one may propagate the ensemble members through the 
chain of models and assess the socioeconomic value expressed in the output. 

The users of hydrological forecast information are very diverse, and so are their risk perception 
and tolerance. Advanced users may base their risk tolerance on modelling and analysis results 
from decision support tools and risk-based quantification of costs and benefits, whereas others 
may only qualitatively update their risk perception. Similarly, the predictability of streamflow 
varies greatly among different hydroclimatological regions and often from one location to 
another even within the same region, and so does the predictive skill among different forecast 
systems and processes. Given this picture, this publication does not attempt to produce a fixed 
set of universal guidelines. Instead, it provides general guidance with key points and offers 

https://library.wmo.int/idurl/4/54637
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case studies and examples in which the guidance is put into practice. Key points are provided 
at the end of each chapter and summarized collectively in Chapter 8. In this way, readers may 
follow the general guidance for their verification task and arrive at a core set of verification 
metrics, scores and diagrams that address their verification objectives. 

With the wide-ranging verification examples provided, users with limited data and resources 
will still be able to initiate streamflow verification, albeit at a limited level and scope (the 
verification tools are freely available). The data and resource limitations should not, however, 
deter readers from gaining experience with hydrological verification and taking steps towards 
wider practices. For this reason, this publication places particular emphasis on gaining a 
fundamental understanding of forecast verification beyond model validation so that the users 
will be able to make the most of the available data, identify possible weak links in their 
forecast systems and processes, and develop and plan for cost-effective pathways towards 
improving forecast products and services with the aid of verification. An important element 
distinguishing verification from validation is the provision and communication of verification 
information to the users of the forecast products and services so that they may make better 
decisions. Such verification information also aids forecasters to better understand their 
forecasts and better explain them to their customers, which will in turn help build stronger 
cases for the necessary data and resources. 

1.2 Organization 

The organization of this publication as an introductory guide reflects its ambitious goal, that is, 
guide readers unfamiliar with verification step by step from gaining an understanding of the 
fundamental concepts in the context of hydrological forecasting to being able to conduct 
hydrological verification using one of the examples in Appendix A as a template. This 
publication assumes that the reader is trained in hydrology and water resources engineering 
and has basic knowledge of applied probability and statistics represented in basic flood 
frequency analysis (Linsley et al., 1982). Given that topics such as estimation and modelling of 
tails of probability distributions are an integral part of statistical hydrology and water systems 
design, one might argue that hydrologists and water resources engineers are particularly well 
prepared to wade into verification. 

Chapter 2 addresses the general question of why one may want to practice verification, 
including what spurred the science and practice of verification in weather forecasting, how 
verification differs from other forms of evaluation, and how verification may lead to improving 
the accuracy and quality of hydrological forecasts and therefore their utility and value.  

Chapter 3 describes the qualities that make forecasts most useful for decision-making. Firm 
understanding of such “attributes of forecast quality” is essential to utilizing all available 
verification metrics, scores, and diagrams effectively and making sense of the verification 
results in the context of the real world. To aid readers in intuitively understanding the 
fundamental concepts, Chapter 3 heavily utilizes graphical illustrations in the context of flood 
forecasting. This is a tutorial chapter intended for those who are not familiar with verification 
and may be skipped on the first reading of this document. 

Chapter 4 describes and explains the verification metrics, scores and diagrams commonly used 
in water and weather forecasting. Strengths, limitations, potential pitfalls and possible 
adaptations are also described in the context of hydrological forecasting and applications. 

Chapter 5provides guidance on the steps necessary before embarking on verification as an 
organized activity and describes the logistical issues to consider. 

Chapter 6 provides guidance on displaying verification results and creating visual verification 
information for various users.  
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Chapter 7 presents six wide-ranging case studies of hydrological verification as listed in 
Table 1. 

Table 1. List of case studies in hydrological verification presented in Chapter 7 

Case number Case name Tools used 

1 Verification of single-valued streamflow forecast with uncertainty 
decomposition  

EVSa  

2 Comparative verification of multiple single-valued streamflow 
forecasts  

EVS  

3 Verification of ensemble streamflow forecast for headwater and 
downstream locations 

EVS  

4 Verification of skill in ensemble streamflow forecast for water 
supply 

EVS  

5 Diagnostic verification in (near) real time: Système de Prévision 
Hydrologique (Government of Québec, Canada); Performance 
Analysis Tool (Australian Bureau of Meteorology); and 
Rijkswaterstaat Operational Systems (Kingdom of the 
Netherlands) 

 

6 Comparative verification of ensemble forecasts for ephemeral 
streams  

MATLAB 

a Ensemble Verification System 

Chapter 8 provides a summary of key points. 

Appendix A presents seven hands-on examples of streamflow verification using various 
verification tools as listed in Table 2. 

Table 2. List of hands-on examples of streamflow verification provided in Appendix A 

Example 
number Example name Tools used 

1 Verification of single-valued streamflow forecast with uncertainty 
decomposition  

EVS  

2 Verification of ensemble streamflow forecast with aggregation of 
multiple forecast points 

EVS  

3 Verification of ensemble streamflow forecast with skill score and 
confidence interval calculations 

EVS  

4 Computational example 1  EVS  

5 Computational example 2 R verification 
package 

6 Computational example 3 Python verif 
library 
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Example 
number Example name Tools used 

7 Comparative verification of accuracy, reliability and sharpness of 
two ensemble streamflow forecasting systems in a stream with 
zero flow 

MATLAB 

Information about the Ensemble Verification System (EVS) (Brown et al., 2010), R verification 
package and Python verif library may be found in computational examples 1, 2 and 3, 
respectively. 

Appendix B provides the mathematical definitions and expressions for the distributions-
oriented approach (Murphy and Winkler, 1987) with graphical illustrations, and those for the 
various statistical moments referred to throughout this document. This appendix is included for 
completeness and reference and may be skipped on the first reading of this publication. 
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CHAPTER 2. WHY VERIFY? 

All forecasts, be they deterministic or probabilistic, are subject to errors whose magnitude and 
characteristics are part of the forecast information. Hence, if the quality of the forecast is 
unknown or is not communicated to the forecasters and the end users, the forecast can only 
be described as incomplete (NRC, 2001). Verification supports “completing the forecast” by 
doing the following: (1) providing the forecast users with up-to-date forecast performance 
information for better decision-making (Brier and Allen, 1951; Murphy and Winkler, 1987; 
Murphy, 1993; Welles et al., 2007); (2) providing the operational forecasters with 
identification and objective assessment of the strengths and weaknesses of the forecasts and 
forecast systems and the uncertainties therein; and (3) providing the forecast developers with 
objective comparative assessment of the newly developed forecast versus the existing one and 
objective guidance for forecast system enhancements (Demargne et al., 2009). 

2.1 Early work in forecast verification 

As operational weather forecasting started in the United States of America and in Europe 
during 1850–1870, the meteorological community began to question the quality of weather 
forecasts and started to discuss the concepts and methods for forecast verification 
(Burton, 1986; Murphy, 1996). One of the earliest papers on the subject was by Finley (1884) 
and describes the accuracy of an experimental tornado forecast system in the United States. In 
this paper, Finley, a pioneer in forecasting severe storms, reported an overall accuracy of 
96.6% for the tornado forecast system. This figure was based on the percentage of correct 
tornado and no-tornado forecasts, accounting only for the correct positive and correct negative 
(that is, no tornado) forecasts. 

Table 3. Pooled results of Finley’s experimental tornado forecasting programme 

Observations 

Forecasts Tornado No tornado Total 

Tornado 28 72 100 

No tornado 23 2 680 2 703 

Total 51 2 752 2 803 

Source: Murphy (1996) 

At first glance, Finley’s accuracy metric may appear to represent very skillful forecasts. 
However, it is heavily influenced by the very large number of correct negatives (2 680 out of 
2 803 forecasts) without accounting for the large number of false alarms (72) and misses (23) 
relative to the number of tornadoes observed (only 51 tornadoes were observed out of 
2 803 forecasts). When false alarms and misses were considered, only 55% of the tornadoes 
were correctly predicted, and 72% of the forecasts for tornadoes were false alarms. Moreover, 
a naïve forecast that states that there will never be a tornado would result in an accuracy of 
98.2% by Finley’s scoring (for the data and verification scores, see Table 3 and 
https://www.cawcr.gov.au/projects/verification/Finley/Finley_Tornadoes.html). Finley’s paper 
(1884) spurred the publication in 1884–1893 of several papers on the deficiencies of the 
percentage correct score in tornado forecast verification, issues related to forecast verification 
in general, and the development of alternative verification methods and measures, some of 
which are still widely used today (Murphy, 1996).  

https://www.cawcr.gov.au/projects/verification/Finley/Finley_Tornados.html
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As illustrated by the so-called “Finley affair” described above, many concepts, methods and 
practices in forecast verification were spearheaded by the meteorological community, which 
recognized very early the importance of verification in improving weather forecasting. These 
verification methods are now increasingly used in other disciplines, including hydrology (Troin 
et al., 2021; Anctil and Ramos, 2019).  

2.2 Modes of hydrological verification 

Forecast verification is the process of evaluating forecast quality as measured by the degree of 
correspondence between the forecast and the reference (usually the verifying observation) or 
by the skill of the forecast relative to some reference forecast (for example, a naïve forecast 
based on climatology or persistence). In the context of hydrological forecasting, verification 
may take on three different but complementary modes of operation: 

(i) Diagnostic verification may be performed whenever data availability or increase in 
sample size warrants generating or updating the necessary or desired verification 
information. 

(ii) Real-time verification may be performed in near real time to aid predictive assessment of 
the quality of a live forecast before the outcome is observed. 

(iii) Event verification may be performed after a significant event to assess the quality of the 
forecasts issued and the performance of the forecasting system used for the specific 
event as part of post-analysis. 

Increasingly often, diagnostic verification is performed in (near) real-time, that is, as soon as 
or very soon after the verifying observation becomes available. Such “operational” verification 
provides near-immediate feedback to forecasters, as elaborated upon in section 5.2.2. Case 5 
in Chapter 7 provides three different real-world applications of such verification. 

Conceptually, one may consider real-time verification a form of diagnostic verification but 
conditioned on the current environmental conditions. Such conditioning identifies the past 
forecasts or reforecasts (if generated retrospectively) that share similar meteorological and 
hydrological conditions to the current one. For example, if heavy rainfall is expected from a 
tropical storm over wet soil, past forecasts issued under similar conditions, or historical 
analogues, are extracted (for example, from a relational database) and verified in near real 
time. Such conditional verification necessarily assumes adequate sample size so that the 
resulting verification information enhances predictive skill. If the number of analogues is too 
small relative to the number of attributes considered in the environmental conditions, the 
resulting conditional verification information is likely to suffer from overfitting and hence lack 
predictive skill. 

If the logistics allow, one may avoid real-time verification by performing diagnostic verification 
conditionally on pre-identified sets of important meteorological and hydrological attributes in 
advance. In practice, such conditioning events can only be defined rather coarsely, as sample 
size decreases very quickly with each additional conditioning attribute. In addition, one must 
accept the risk that the conditioning might turn out to be incorrect, in which case the use of 
the resulting verification information may potentially be counterproductive. Real-time 
verification should only be performed by operational forecasters who already have the full 
knowledge of the verification information without the event-specific conditioning and know how 
to synthesize such additional verification information. 

The scope of event verification often extends beyond the assessment of forecast quality to 
include that of the timeliness and appropriateness of warnings. In addition, evaluations of the 
performance of the service delivery components of a hydrological forecasting system may also 
be included, such as an assessment of the degree to which the forecasting and forecast-
informed decision procedures were followed and whether “perfect warnings” (that is, the set of 
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warnings that should have been issued as per procedures) would have captured the severity 
and impact of the event to a satisfactory degree. In event verification, forecast quality is 
assessed using the forecasts produced immediately before and during the event and all 
observations available at the time of the analysis. Therefore, sample size is small, and the 
forecast–observation pairs only reflect the single event. One must hence recognize that the 
resulting verification information does not represent the overall quality of the forecasting 
system. 

Well-planned verification should identify and address specific questions about forecast quality 
to effectively inform the decisions of the forecast users. Below are several groups of such 
questions: 

• How suitable are the forecasts for a given application? Are the forecasts sufficiently 
unbiased for the decisions to be made? For example, probabilistic forecasts should not 
systematically under- or over-prescribe the probability of flooding. Is the forecast better 
than naïve forecasts? Multiple metrics may be used to assess various aspects of forecast 
quality. For example, a probabilistic flood forecast may be evaluated in terms of the 
accuracy of the forecast probability of exceeding the flood level and the ability of the 
forecast to capture the flood peak timing. 

• What are the strengths and weaknesses of the forecasts? For which cases does the 
forecast system perform well or poorly? For example, is the forecast quality different for 
high- versus low-flow conditions, specific seasons (winter versus summer) or the state of 
the atmosphere or the hydrological system (for example, wet versus dry antecedent soil 
moisture)? 

• What are the important sources of error in the forecast? Is the forecast impacted more 
by errors in the forcing inputs or errors in the initial conditions (ICs)? Multiple forecast 
streams may be set up to isolate the impact of different sources of error in the forecast 
chain (for example, forcing inputs, ICs, model parameters, model structure) as well as 
their interactions. 

• How are new science and technology improving the forecasts? Do the forecasts from the 
new forecast system improve the verification results over those from the current system? 
The new system may reflect new calibration parameters, a new preprocessing or 
postprocessing technique, or a new source of observation. Verification helps objectively 
assess the impact on forecast accuracy and quality of any new development of the 
forecasting system and track the forecast improvement over time. 

• What should be done to improve the forecasts? Verification should offer guidance on 
prioritizing the forecast system development and enhancements. 

Given the diversity of the verification questions and that of the potential users of the 
verification information, different levels of verification are needed to enable informed decision-
making (Jolliffe and Stephenson, 2012). For the above, one must clearly identify the objectives 
of the verification task and the specifics of the verification information sought so that the 
appropriate forecast–observation datasets and verification methods may be determined (Brier 
and Allen, 1951). As noted in section 1.1, these guidelines are focused on the evaluation of 
forecast quality, which is a necessary step for assessing the forecast value for specific user 
decisions. As part of verification planning, it is hence a good practice to consider the range of 
decisions that the users may make to increase the information content of the verification 
results, even if one does not explicitly assess the forecast value in the verification task at 
hand. 
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2.3 Types of forecasts and observations 

Verification relies on the comparison of the forecast event with an observation, or a high-
quality estimate, of its outcome. The forecast may be single-valued or probabilistic. Depending 
on the type of forecast, the choice of verification methods and metrics will vary. Whereas 
single-valued forecasts provide no information about the uncertainty or confidence in the 
single predicted value (Wilks, 2011), probabilistic forecasts describe the range and likelihood of 
possible outcomes. An ensemble forecast may be easily converted to a probabilistic forecast. 
For example, when 25% of the ensemble members rise above the flood level at some future 
time, there is a 25% chance of flooding at that time according to the ensemble forecast. 
Ensemble forecasts are sometimes collapsed into single-valued forecasts by retaining only the 
ensemble mean or median. Any measure of the uncertainty captured by the ensemble 
members is then lost, and the quality of the ensemble forecast can only be described partially. 
One can attach uncertainty bounds to a single-valued forecast based, for example, on flow-
dependent error distributions derived from a large sample of past forecasts and verifying 
observations. Such practices are in fact common in hydrological forecasting (Regonda 
et al., 2013). Once such uncertainty information is attached, however, one no longer has a 
single-valued forecast but a probabilistic forecast or, if one samples plausible equally-likely 
realizations from it, an ensemble forecast. 

Forecasts, whether single-valued or probabilistic, may describe binary (for example, flood and 
no flood), categorical (for example, major flood, minor flood and no flood), or continuous (for 
example, streamflow) predictands. Binary, or dichotomous, forecasts may be derived from the 
ensembles, for example, by defining the occurrence of an event as the forecast probability 
exceeding some threshold. Similarly, an ensemble forecast may also be converted to a 
categorical forecast by considering multiple thresholds. For example, with two thresholds – for 
minor and major flooding – one may prescribe the probabilities of major and minor flooding 
from an ensemble forecast. Multiple categories may also be defined based on quantiles. One 
may use the observed streamflow values associated with exceedance probabilities of, for 
example, 10%, 30%, 70% and 90% as the thresholds for different categories. The proportion 
of the ensemble members in each category or the cumulative proportion up to and including 
each category could then define a probabilistic forecast. A multicategory forecast may also be 
treated as a set of binary forecasts by considering each threshold separately.  

The verifying observation may be discrete, with only a limited set of possible outcomes (for 
example, the two outcomes of flooding and no flooding), or continuous, with an infinite 
number of possible outcomes. Given a threshold, a continuous observation may be expressed 
as an indicator variable which takes on the value of 1 if the observation exceeds the threshold, 
and 0 otherwise. For a categorical probabilistic forecast, the indicator variable for the 
observation may, for example, be defined as 1 for all categories greater than or equal to the 
category in which the observation falls, and 0 for all other categories. Table 4 summarizes the 
classification of hydrological forecasts according to type and specificity, with examples. 

Table 4. Classification of hydrological forecasts according to type and specificity, 
with examples 

Type Specificity Examples 

Single-valued 
(deterministic) 

Binary Flooding or no flooding 

Categorical Minor/major flooding for two-category flood forecast 

Continuous Streamflow, ensemble mean forecast of streamflow, water 
level or stage, volume 

Probabilistic Binary Probability of flooding 
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Type Specificity Examples 

Categorical Probabilities of minor and of major flooding, probabilities of 
streamflow exceeding the 10th, 30th, 70th and 90th 
percentiles of observed flow  

Continuous Probability distribution of streamflow, ensemble streamflow 
forecast, ensemble water level (or stage) forecast 

Most verification studies, including those in this publication, assume that observation errors 
are negligibly small compared to forecast errors. Observations are subject to both random and 
systematic errors, such as biases and representativeness errors in measurement, reporting 
errors, conversion errors, and analysis errors which occur when the observational data are 
analyzed or remapped to match the scale of the forecast. Most streamflow “observations” are 
in fact estimates obtained via rating curves rather than “measurements”. Therefore, 
streamflow observations are subject to significant uncertainties, particularly for large flows. 
Harmel et al. (2006) report streamflow observation errors for small watersheds of 42%, 19%, 
10%, 6% and 3% for the worst case, typical maximum, typical average, typical minimum and 
best-case scenarios, respectively. Di Baldassarre and Montanari (2009) report that the overall 
error affecting river discharge observations ranges from 6.2% to 42.8%, at the 95% 
confidence level, with an average value of 25.6%. Bowler (2008) reports that observation 
errors reduce the apparent skill of the forecast system, and that their effect is typically largest 
at short lead times when forecast errors are smallest. When verifying seasonal streamflow 
forecasts, streamflow observations may be naturalized to take out the effects of dams or 
diversions. In such cases, the resulting naturalized streamflow “observations” would 
necessarily be subject to larger errors. Even if one does not explicitly account for observation 
errors in the verification process, it is a good practice to consider how the verification results 
and any conclusions therefrom might potentially be impacted by significant observation errors. 

2.4 Sources and types of error and roles of calibration, validation and 
verification 

Forecast errors are collective realizations of the total uncertainty associated with the 
predictand (that is, the variable being predicted). There are two large sources of uncertainty in 
hydrological forecasting: forcing input uncertainty and hydrological uncertainty 
(Krzysztofowicz, 1999; Seo et al., 2006). Forcing input uncertainty includes all uncertainties 
associated with the hydrometeorological forecasts used as input, such as quantitative 
precipitation and temperature forecasts from the numerical weather and climate prediction 
models. Hydrological uncertainty includes all uncertainties associated with the hydrological, 
hydraulic, reservoir and any other water models used in hydrological forecasting under no 
input uncertainty (that is, under clairvoyant hydrometeorological forecasts). Hydrological 
uncertainty typically includes uncertainties in the model structures, parameters, and initial 
conditions (ICs), and those associated with human control of movement and storage of water 
(known or unknown). Input uncertainty increases with lead time as hydrometeorological 
variables become increasingly less predictable further into the future. 

Structural uncertainty arises due to the deficiencies in hydrological, hydraulic and other water 
models, such as lack of model physics (for example, infiltration) and poor model dynamics (for 
example, routing). Since no model is ever perfect, structural uncertainty always exists 
regardless of the choice of models. Parametric uncertainty comprises the uncertainty in the 
tunable model parameters and the uncertainty in the various geographical information system 
(GIS) layers and other location-specific physiographic attributes used to prescribe the fixed 
boundary conditions (BCs) in the hydrological, hydraulic and other water models. The IC 
uncertainty is associated with the model states valid at the prediction time where forward 
integration of the models begins. Because the model states are commonly not observed 
directly in operational hydrological forecasting, particularly at the catchment scale (soil 
moisture being the prime example), the ICs are generally subject to large uncertainties. For 
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this reason, they are kept as up to date as possible in operational forecasting by re-running 
the models over the very recent past using all available observations, including late-arriving 
ones. 

One of the most cost-effective (and hence routinely practised) ways to reduce hydrological 
uncertainty in hydrological modelling and prediction is to reduce parametric uncertainty via 
calibration (that is, by adjusting the tunable model parameters to maximize the agreement 
between the model simulation and the verifying observation under some criteria) (Duan 
et al., 2006). Calibration typically addresses parametric uncertainty only. Hence, the 
performance metrics primarily used in calibration, such as the Nash–Sutcliffe efficiency (Nash 
and Sutcliffe, 1970) and the Kling–Gupta efficiency (KGE) (Gupta et al., 2009), do not, in 
general, measure the set of forecast attributes that are necessary to assess predictive 
hydrological uncertainty. If desired, one may use indices such as KGE in forecast verification. 
There are, however, potential pitfalls in using scoring rules that are not strictly proper (see 
section 4.2.2), particularly when the forecasts are unfamiliar (see Appendix B). For this 
reason, care is necessary in adopting performance metrics used in calibration for verification.  

In real-time forecasting, some form of state updating is also routinely practised to reduce the 
IC uncertainty using manual or automatic DA of real-time observations, those of discharge 
being the most important. The positive impact of state updating is generally large for short 
lead times but, depending on the memory of the hydrological system, wears off relatively 
quickly as the lead time increases. Hydrological uncertainty may also include anthropogenic 
uncertainties if there are unknown or poorly known human-made changes in the movement 
and storage of water. For example, forecast of outflow from a dam will have much larger 
uncertainty if the reservoir release schedule or the operating rule is unknown or incorrectly 
known. Figure 1 provides a qualitative depiction of the input and hydrological uncertainties 
versus lead time. 

 
Figure 1. Qualitative depiction of input and hydrological uncertainties versus lead 

time 

From the perspective of hydrological forecasting, one may consider input and hydrological 
uncertainties as aleatory and epistemic, respectively. The former is caused largely by the 
random or chaotic variations in the Earth system, whereas the latter arises more from the lack 
of knowledge of the phenomena, processes, parameters or states than randomness or extreme 
sensitivity to ICs or BCs. Epistemic uncertainty most often manifests itself as systematic 
errors, or biases, whereas aleatory uncertainty is usually realized as both random and 
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systematic errors. If random errors have little statistical structure, they tend to cancel out 
when aggregated over space or time. Systematic errors, on the other hand, tend not to cancel 
out, resulting in biases. Assessing both input and hydrological uncertainties is an important 
aspect of hydrological verification. Based on the relative magnitude of the two, the forecasting 
agency may identify the more cost-effective areas of improvement. Case 1 in Chapter 7 
describes a simple example of decomposing total uncertainty into input and hydrological 
uncertainties, and Example 1 in Appendix A provides a hands-on example of Case 1 using the 
EVS. 

Type I and type II errors are most often associated with statistical hypothesis testing. In 
verification, type I, or false positive, and type II, or false negative, errors refer to incorrect 
predictions of an event, such as flooding, that did not and did occur, respectively. The two 
types of errors are competing attributes of a forecast in that, unless the accuracy of the 
forecast is improved, they cannot in general be reduced simultaneously. The above point is 
illustrated in Figure 2 using a toy example made with synthetically generated data. The figure 
shows scatterplots of two sets of short-range river stage forecasts, forecast A (black) and 
forecast B (red), versus the common verifying observation. The two forecasts are based on the 
same time series model, but different DA techniques for state updating are used for real-time 
error correction. The DA technique for forecast A considers type I error only, whereas that for 
forecast B considers both type I and type II errors (Shen et al., 2022a). In the figure, the 
vertical and horizontal lines at 1.8 m represent a fictitious bankfull stage above which flooding 
begins to occur. If the forecast and the verifying observation fall within the false positive or 
negative region demarcated by the above lines as shown in the figure, the forecast has type I 
or II error, respectively. Note that forecast A shows no type I (false positive) error but large 
type II (false negative) error and fails to score even a single hit. Forecast B shows smaller 
type II (false negative) error but larger type I (false positive) error compared to forecast A. 
The example illustrates that, depending on the cost or the negative impact associated with 
type II versus type I error, one may arrive at very different conclusions about the utility of a 
forecast or the relative utility of competing forecasts. Hence, assessment of type I and II 
errors is an important part of verification. 

 
Figure 2. Illustration of type I (false positive) and type II (false negative) errors 
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For flood forecasting, accurate prediction of time to peak and the timing and magnitude of the 
rising limb and peaks of the hydrograph is of particular importance. Timing errors arise from 
various sources, in addition to the errors in the precipitation forecast, as described below. After 
a prolonged inter-storm period, the soil moisture states of rainfall-runoff models are subject to 
increased uncertainty. Hence, significant errors are more likely in forecasting the timing of the 
incipient rise of the hydrograph from significant rainfall after a long dry spell. Unless corrected 
in a timely manner via state updating in real time, such timing errors generally lead to large 
errors in streamflow forecasts, particularly in the rising limb (Shen et al., 2022b). If unit 
hydrograph (UHG) is used to route surface runoff for a catchment that is too large for the UHG 
assumptions to hold consistently, rainfall concentrated in one part of the catchment is likely to 
result in timing errors in streamflow forecasts at the catchment outlet even with perfect rainfall 
forecasts. When routing flood waves through a river reach using observed upstream BCs, 
timing errors may result from inaccurate fixed BCs and fluid-dynamical parameters in the 
routing or hydrodynamical model (Kim et al., 2021). Because the BC and the parameters vary 
with the physiographic properties of the channel (for example, in-channel versus flood plain), 
timing errors vary with the magnitude of the flow and the physiography of the flow paths. The 
above examples suggest that the verification information for time-to-peak forecasts, by itself, 
is not likely to be very useful for decision support or diagnosing the performance of the 
forecast system, and that time-dependent characterization and quantification of the errors in 
streamflow forecasts is necessary to contextualize timing errors in the reference frame of the 
hydrograph response. Such time-dependent verification requires taking the time dimension 
into account and hence poses a higher-dimensional problem of identification, estimation and 
inference compared with typical streamflow verification. Verification of streamflow forecasts for 
different stages of the hydrograph response and that of time-to-peak forecasts is an area of 
further research and presents new opportunities for advancing the science and practice of 
hydrological verification (Liu et al., 2012). 

The terms verification and validation are used somewhat differently in different disciplines 
(Oreskes et al., 1994). In geoscience, verification refers to objective comparison of forecasts 
and observations to establish accuracy of the forecast. Validation, on the other hand, refers to 
the substantiation that the process and methodology are working correctly and producing the 
intended results (Wilson, 2017). In machine learning, independent validation is routinely 
practised to assess performance, and cross-validation is widely used for this purpose. Cross-
validation partitions the data into two subsets and uses one subset for training, or calibration, 
of the model and the other for validation. Typically, multiple rounds, or folds, of cross-
validation are performed using different partitions to reduce sampling variability, after which 
all validation results are combined into one for calculation of performance measures. In 
hydrological or meteorological verification, there is no training or calibration involved, and in 
the context of machine learning, only a single round of independent validation is performed, in 
most cases using all available forecasts within the spatio-temporal domain of interest. 

Bootstrapping is another resampling method widely used in machine learning (Efron, 1979). In 
verification, bootstrapping is often used to estimate confidence intervals by randomly sampling 
historical forecasts with replacement, performing verification, and repeating the above steps 
many times over to generate an ensemble of the same verification statistics. While 
computationally expensive, bootstrapping is relatively straightforward and makes no 
distributional assumptions, hence it is a powerful tool for assessing sampling uncertainty. 
Examples 3 and 7 in Appendix A provide hands-on applications of bootstrapping for estimation 
of confidence intervals in ensemble streamflow verification using the EVS and MATLAB, 
respectively. 

For large-to-extreme events, sample size may be too small to produce statistically significant 
verification results that are location-specific. In such cases, some type of regionalization or 
trading of space for time is likely to be necessary, similarly to the approaches used in 
precipitation and streamflow frequency analyses (Perica et al., 2018; Riggs, 1973). Most 
forecasts have limited dynamic ranges when compared to the verifying observations, which 
often leads to under- and over-prediction of very large and small events, respectively. The 
above situation may result in type II error, or false negatives, which are particularly important 
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for prediction of large-to-extreme events (see Chapter 3 for a conceptual illustration). Type II 
error is often masked by sampling uncertainty and may not readily reveal itself in verification 
statistics. Hence, it is very important to visualize the raw forecasts in some form and scrutinize 
them against the verifying observations as part of the verification process (see Chapter 6). 
This practice is also important for assessing the practical significance of the differences in the 
verification statistics for competing forecasts. 

2.5 Verification of hydrometeorological forecasts 

Hydrological forecasts are usually forced by meteorological forecasts of precipitation, 
temperature, and possibly other variables such as potential evapotranspiration. The skill in the 
hydrological forecasts is hence usually bounded by the skill in the meteorological forecasts (see 
Figure 1). Verification of the forcing input forecasts is an important aspect of hydrological 
verification as it allows assessment of the relative importance of input versus hydrological 
uncertainties and the impact of the quality of the input forecast on that of the hydrological 
forecast. Weather forecasting centres usually produce verification statistics along with their 
operational weather forecasts. Such verification information, however, is generally of very 
limited utility in hydrological verification as explained below (see also discussions in 
Pappenberger et al. (2008) and Anderson et al. (2019)). 

Meteorological forecasts are gridded and spatially continuous, and are usually verified 
regionally or over large areas. Streamflow forecasts, on the other hand, are verified at specific 
locations where observations are available, typically at the basin outlets or points of interest 
along river reaches. In addition, the domain and resolution of the meteorological forecasts are 
not specific to the catchment areas and generally are not comparable to the spatio-temporal 
resolution of the hydrological models used to produce hydrological forecasts. Even if the 
spatio-temporal resolution of the input forecasts matches that of the hydrological model (if a 
distributed model or models are used), the verification information over a large area is not 
representative of the specific catchments of interest, particularly for precipitation and 
temperature in complex terrain with strong orographic influences (Harris et al., 2001; Brussolo 
et al., 2008). Note that a precipitation forecast that is accurate at a regional scale to a 
meteorologist can very easily be a complete miss to a hydrologist or a water resources 
engineer, particularly for small basins if precipitation falls outside of the boundary of the 
catchment of interest. 

It is therefore necessary to verify the input forecasts used in operational hydrological 
forecasting for the impact assessment or the uncertainty decomposition described above. Such 
verification often reveals catchment- and lead time-specific biases in precipitation and 
temperature forecasts that are also scale- and terrain-sensitive (Pappenberger and 
Buizza, 2009; Imhoff et al., 2020). Most hydrological ensemble forecast systems include a 
component to remove or reduce such biases, the Meteorological Ensemble Forecast Processor 
(MEFP) (Schaake et al., 2007; Wu et al., 2011) for the Hydrologic Ensemble Forecast Service 
of the United States National Weather Service (NWS) (Demargne et al., 2014) being an 
example. 

2.6 Key points 

• The purpose of hydrological verification is to increase the value and utility of hydrological 
forecast products and services by supporting objective and systematic improvement of 
forecast quality and the decisions of the users of the forecast information. 

• Hydrological verification broadly utilizes the theory and practices developed by the 
meteorological community, which was early to recognize the value of verification in 
improving weather forecasting. 
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• Hydrological forecasts are subject to input and hydrological uncertainties. The former are 
associated with errors in the hydrometeorological forecasts used as input to hydrological 
models. The latter are associated with errors in the rest of the hydrological forecasting 
process. Verification supports uncertainty decomposition to guide cost-effective 
improvement of forecast input, systems and processes. 

• Type I, or false positive, and type II, or false negative, errors are competing attributes of 
a forecast. Verification informs the trade-off between the two types of errors and 
supports decision-specific assessment of the utility of a forecast and the relative utility of 
competing forecasts. 

• Movement and storage of water is heavily modulated by the physiography of the 
individual catchments, river basins, channels and water bodies. Hence, unlike weather 
forecasts, hydrological forecasts should be verified as location-specifically as possible to 
the extent data availability allows. 

• Prediction of large-to-extreme events is very often the most important service of 
operational hydrological forecasting. Such events occur infrequently, and hence the 
sample size tends to be small. To increase sample size, some form of trading of space for 
time or regionalization is usually necessary at the expense of location specificity. 



17 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 

CHAPTER 3. ATTRIBUTES OF FORECAST QUALITY 

To assess the quality of a forecast, the forecast is compared, or verified, against an 
observation or a high-quality estimate of the outcome. In some cases, the verifying 
observation may not be an actual observation or derived from one but a model output such as 
a hydrological simulation that makes it possible to isolate errors from a particular source or 
sources. Forecasts of higher quality display a stronger correspondence with the observations, 
as may be assessed qualitatively in scatterplots of single-valued forecasts versus verifying 
observations. Such scatterplots are empirical representations of the joint probability 
distribution between the forecast and the verifying observation from which the relevant 
conditional and marginal distributions may also be obtained (see Appendix B for the 
mathematical relationships). Verification theory describes and summarizes forecast quality in 
the reference frame of this joint distribution.  

3.1 Introduction 

To describe the joint distribution above, it is necessary to describe, or model, the forecast and 
the verifying observation as random variables. In this section, we use a simple toy example to 
illustrate how such modelling gives rise to an unknown joint distribution between the forecast 
and the verifying observation, what verification is concerned with regarding this distribution 
and what assumptions are commonly made in practical verification. This stand-alone section is 
for tutorial purposes only and is intended for those who may be familiar with statistics but not 
necessarily with basic probability theory.  

First, let us denote the discrete random variables representing the forecast and the 
observation of some uncertain variable of interest as X and Y, and the experimental values, or 
outcomes, that X and Y may take on as x and y, respectively. Let us now consider forecasting 
rain or no rain in a neighbouring town a day ahead. One may make a nearly effortless forecast 
by looking at the sky for cloudiness. If the cloud cover does or does not exceed some threshold 
(referred to as cloudy or not cloudy for brevity), one forecasts rain or no rain, respectively. For 
verification, a similarly effortless observation may be made by looking out the window the next 
day. If one does or does not see rain on the ground from one’s house, one considers that it did 
or did not rain in the neighbouring town as well, respectively.  

Cloudiness alone is generally a very poor model for forecasting rain or no rain a day ahead and 
hence one may expect large forecast errors. Due to the spatial variability of rainfall, local and 
regional hydroclimatological variations, and possible lack of representativeness of the location 
of one’s house, looking out the window may not be a very good model for observing rain or no 
rain in a neighbouring town and hence may lead to significant observation errors. 

In the illustrative example above, both the forecast and observation errors are largely random 
in nature, and hence the forecast and the observation can only be described as random 
variables. For verification, the look-at-the-sky model represents the (categorical) forecast, X, 
whose possible outcomes are cloudy and not cloudy. Similarly, the look-out-the-window model 
represents the (categorical) observation, Y, whose possible outcomes are rain and no rain. 
Note that the possible outcomes for each model are mutually exclusive (that is, only one of the 
two can occur at any given time) and collectively exhaustive (that is, nothing else but the two 
can ever occur). One may assign 1 and 0 (or some other numbers or symbols) to the 
outcomes of cloudy and not cloudy, respectively, in which case the experimental value, x, of 
the random variable, X, is 1 or 0. Similarly, one may assign 1 and 0 to the outcomes of rain 
and no rain, respectively, in which case the experimental value, y, of the random variable, Y, 
is 1 or 0. One may surmise from the above that there likely exists a relationship, albeit a weak 
one, between the two random variables (X and Y) which may be described by their joint, or 
bivariate, probability distribution. In the context of the example above, verification is 
concerned with identifying the most important descriptors, or attributes, of the unknown joint 
distribution between X and Y, estimating the statistics for the attributes, and making 
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inferences about the joint distribution. The above identification, estimation and inference are 
made based on the outcomes or the experimental values, x and y, of the forecasting and 
observing models, X and Y, from many repeated “experiments” using the look-at-the-sky and 
look-out-the-window models, respectively. Table 6 provides an example of a tabulation of the 
results of many such experiments, whereas a scatterplot of single-valued forecasts versus 
verifying observations is an example of a visualization of the results of many such experiments 
for continuous random variables (see, for example, Figure 2). Of course, in operational water 
and weather forecasting in the real world, the forecast and observation models are far more 
sophisticated, but the concepts are the same. 

An important assumption behind the above approach is that each forecast–observation pair is 
independent (of all other pairs) and identically distributed (IID) (and hence stationary). The 
IID assumption entails that, in theory, one only needs to describe a single joint relationship 
between the two random variables representing the forecast and the observation. Whereas the 
outcomes of experiments such as tossing a coin many times (that is, a Bernoulli process 
(Drake, 1967)) may indeed be considered IID, the assumption is not likely to hold all 
inclusively for variables such as precipitation and streamflow. Therefore, it is often necessary 
to resample and stratify the forecast–observation pairs so that the subsampled pairs may be 
considered to share a common joint distribution or condition the pairs to make inferences 
about certain parts of the distribution.  

The (unknown) joint relationship between forecast and observation is fully described by an 
infinite number of statistical moments such as mean, variance and skewness (see Appendix B). 
To capture the essence of the relationship, multiple aspects or attributes of forecast quality are 
necessary. Hence, verification requires the use of different measures and scores 
(Murphy, 1993, 1997). The choice of metrics to provide sufficient information about the 
forecast quality may vary depending on the forecast type (single-valued or probabilistic), the 
specificity of the forecast (dichotomous, categorical or continuous), the forecast application 
and the user needs, in addition to the predictability of the variables being forecast and the 
predictive skill of the forecast systems and processes. It suffices to say that verification 
measures and scores should be chosen to give the user meaningful information on which the 
user can make informed decisions (Jolliffe and Stephenson, 2012).  

3.2 Organization of this chapter 

Most verification metrics, scores and diagrams are complementary, but many overlap with one 
another by varying degrees in information content. For effective and efficient verification, it is 
necessary to identify the important forecast attributes for the verification task at hand and 
narrow the large array of metrics, scores and diagrams down to a core combination that sheds 
the most light on the important, as well as differentiating (good or bad), qualities of the 
subject forecast. Ideally, the metrics of choice should be largely independent of one another in 
information content to avoid tangential analysis (that is, more is not necessarily better). For 
the above, it is necessary to gain firm understanding of and familiarity with several 
fundamental concepts and the “menu” of available metrics, scores and diagrams. Chapter 3 
and Chapter 4 address the above. 

The rest of this chapter describes the various aspects of forecast quality. To aid those who are 
not familiar with probabilistic forecasting, the attributes are described first in the context of 
single-valued forecasts and then extended to probabilistic forecasts. For single-valued 
forecasts, scatterplots showing the forecasts and their verifying observations provide an 
intuitive depiction of forecast quality; in general, the tighter the scatter around the one-to-one 
line, the higher the forecast quality. In addition, one may easily relate the widely used 
verification measures such as the mean error (ME), RMSE and correlation with the general 
geometry of the scatter in most cases. 

For probabilistic forecasts, the measures and diagrams used to assess forecast quality (see 
Chapter 4) are more complex. To utilize them effectively, it is necessary first to acquaint 
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oneself with several attributes such as reliability, resolution, uncertainty, type II conditional 
bias, discrimination and sharpness. Though equally applicable except for sharpness, the above 
attributes are not often used in the verification of single-valued forecasts, and hence many 
may find them unfamiliar. To aid intuitive understanding, this chapter provides pictorial 
explanations of the attributes first using idealized single-valued forecasts and then using 
simplified ensemble forecasts in physical space, rather than in probability space, in emulation 
of the scatterplots with which hydrologists and water resources engineers are familiar. 

3.3 Forecast attributes in the context of single-valued forecasts 

This section describes selected attributes that are frequently used in verification. They are first 
described in the context of single-valued forecasts to avoid potential confusion that may arise 
from navigating between physical space and probability space. 

3.3.1 Bias 

Bias refers to systematic error in the forecast relative to the verifying observation. The most 
widely used form is mean bias, or first-order bias, defined as the difference between the 
average of the forecasts and that of the verifying observations. Climatological forecasts, by 
definition, have no mean bias. Streamflow forecasts that tend to over- or under-forecast have 
positive or negative mean bias, respectively.  

One may similarly define second-order bias as the difference in standard deviation (or 
variance) between the forecast and the verifying observation. If the variability of the forecast 
is smaller than that of the observation due, for example, to the limited dynamic range of the 
forecast system, the standard deviation of the forecast is likely to be biased low, that is, the 
forecast will have a negative second-order bias. If the forecast suffers from large random 
errors, it may have a positive second-order bias. 

Higher-order moments and biases are often not considered in the verification of single-valued 
forecasts for two main reasons. The first is that the commonly used moment-based verification 
metrics such as the mean squared error (MSE) are only of second order. The second is that 
estimation of higher-order moments requires an increasingly larger sample size which is often 
not available in practice. However, precipitation and streamflow, arguably the two most 
important variables in operational hydrological forecasting, generally have skewed (that is, 
asymmetric) distributions (Bras and Rodriguez-Iturbe, 1984). Skewness is an important 
indicator not only of the shape of the tail of the distribution and but also of possible 
heteroscedasticity (that is, nonuniformity in variability), both of which are particularly 
important for forecasting and verification of large-to-extreme events. Significant 
heteroscedasticity is an indication that the IID assumption may not be reasonable. Therefore, 
examination of skewness and heteroscedasticity often sheds significant additional light on the 
assessment of magnitude-dependent predictability and predictive skill in hydrological 
verification (Pagano and Garen, 2005). The Breusch–Pagan test (Breusch and Pagan, 1979), 
developed originally for linear regression, is very useful for testing heteroscedasticity and is 
available in various statistical packages, including in multiple R packages. 

3.3.2 Correlation 

Correlation refers to the strength of statistical association between the forecast and the 
verifying observation. The relationship may be linear or nonlinear, positive or negative. The 
two most widely used measures for association are the Pearson correlation, or simply 
“correlation”, which measures linear correlation, and the Spearman’s rank correlation, or rank 
correlation, which measures ordinal association. Rank correlation is often used to assess the 
strength of the monotonic relationship between forecasts and observations.  
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3.3.3 Accuracy 

Accuracy refers to the level of agreement between the forecast and the verifying observation. 
The most widely used measure of accuracy for single-valued forecasts is the MSE (or RMSE) 
which reflects mean bias, second-order bias and correlation (see Equation 61 in Appendix B). 
Accurate forecasts form a tight scatter with verifying observations around the one-to-one line. 
Such forecasts necessarily have small mean bias, small second-order bias and high correlation. 

3.3.4 Skill 

Skill refers to the relative accuracy of the forecast compared to some reference forecast or 
benchmark of choice. If the subject forecast is more accurate than the reference forecast, the 
former is said to have skill, or to be skillful. A skill score calculates fractional improvement in 
accuracy by the subject forecast over the reference forecast using the measure of accuracy of 
choice.  

The general definition of a skill score for the given metric and reference forecast (such as 
climatology or the forecast from a baseline forecasting system) is given by: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  =  
𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  −  𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑓𝑓

𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓  −  𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑓𝑓
 (1) 

where 𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑓𝑓 and 𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓 are the values of the chosen accuracy metric for the 
forecast being evaluated, the reference forecast, and the perfect forecast, respectively. If the 
score of the perfect forecast is equal to 0 (which is the case for most metrics, including the 
MSE), the skill score is given by: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  =  
𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑓𝑓 − 𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑓𝑓
 (2) 

As an example, if the measure of accuracy chosen is the MSE, the MSE skill score (MSESS) of 
the subject forecast with respect to the reference forecast is given by: 

𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆 =
𝑀𝑀𝑆𝑆𝑀𝑀𝑟𝑟𝑟𝑟𝑓𝑓 − 𝑀𝑀𝑆𝑆𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑀𝑀𝑆𝑆𝑀𝑀𝑟𝑟𝑟𝑟𝑓𝑓
= 1 −

𝑀𝑀𝑆𝑆𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑀𝑀𝑆𝑆𝑀𝑀𝑟𝑟𝑟𝑟𝑓𝑓

 (3) 

where 𝑀𝑀𝑆𝑆𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑀𝑀𝑆𝑆𝑀𝑀𝑟𝑟𝑟𝑟𝑓𝑓 are the MSEs of the subject and reference forecasts, respectively. 

The skill score of a perfect forecast is unity. A skill score of zero means that the forecast is no 
better than the reference forecast under the chosen measure of accuracy. A negative skill 
score indicates that the subject forecast is less accurate than the reference forecast. The 
choice of the reference forecast depends on the purpose of the verification. Usually, the 
reference forecast is a “naïve” forecast, such as (observed) climatology, persistence (defined 
as the most recent observation) or random chance. The benchmark could be a forecast 
produced from a baseline forecasting system if the aim is to assess improvements in the 
forecast system. The Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970), which is widely used 
in hydrology for model calibration, is a MSE skill score with observed climatological mean as 
reference. 

3.3.5 Decomposition of mean squared error 

Murphy and Winkler (1987) introduced a general verification framework referred to as the 
distributions-oriented approach in which the forecast and observation are treated as random 
variables and the forecast–observation pairs are assumed to be IID (see section 3.1). In this 
approach, forecast quality is assessed by factorizing the joint probability distribution of the 
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forecast and the verifying observation into conditional and marginal distributions. Appendix B 
provides the pertinent mathematical details.  

A key element of the above approach is the decomposition of the MSE in two different ways: 
the calibration–resolution (CR) decomposition and the likelihood–base rate (LBR) 
decomposition (Murphy and Winkler, 1987). The former decomposes the MSE into reliability 
(REL) (also referred to as type I conditional bias), resolution (RES) and uncertainty (UNC), and 
the latter decomposes the MSE into type II conditional bias (T2B), discrimination (DIS) and 
sharpness (SHA): 

 𝑀𝑀𝑆𝑆𝑀𝑀 = 𝑅𝑅𝑀𝑀𝑅𝑅 − 𝑅𝑅𝑀𝑀𝑆𝑆 + 𝑈𝑈𝑈𝑈𝑈𝑈 (4) 

 𝑀𝑀𝑆𝑆𝑀𝑀 = 𝑇𝑇2𝐵𝐵 − 𝐷𝐷𝐷𝐷𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆 (5) 

The mathematical expressions of all terms in Equations 4 and 5 may be found in Appendix B, 
and the expressions for their statistical estimators may be found in Chapter 4. Equations 4 and 
5 are referred to hereafter as the CR and LBR decomposition equations, respectively. 
Mathematically, the LBR decomposition equation is identical to the CR decomposition equation, 
except that the variables for the forecast and the verifying observation are interchanged. For 
example, UNC in the CR decomposition equation represents the variability (measured by 
variance) of the observation. Hence, SHA in the LBR decomposition equation does the same for 
the forecast. The difference between the CR and LBR decomposition equations is that the 
former assesses forecast accuracy, as measured by the MSE, in reference to the forecast (that 
is, conditioned on the forecast event), whereas the latter does the same but in reference to the 
verifying observation (that is, conditioned on the observed event). Hence, one may consider 
the CR decomposition a forecast-centric attribution of forecast accuracy, whereas the LBR 
decomposition may be viewed as an observation-centric attribution. Though verification and 
prediction are different, one may think of CR and LBR decompositions as being analogous to 
forward (that is, regular) and reverse linear regression, respectively. 

The above two decompositions result from factorizing the same joint probability distribution of 
the forecast and the verifying observation in two different ways. Hence, the terms in the CR 
and LBR decomposition equations may be more easily understood with the help of idealized 
scatterplots representing empirical probability density functions (PDFs) or probability mass 
functions (PMFs) (see Appendix B for the distinction), as shown in Figure 3 and Figure 4. In 
each panel of the figures, the parallelogram represents the outermost boundary of a uniformly 
spread and infinitely dense scatter of the single-valued forecast–observation pairs. Their 
empirical joint PDF, or histogram, is hence a parallelepiped. In the figures, the blue areas 
reduce the MSE (hence, the larger they are, the more desirable), whereas the red areas 
increase the MSE (hence, the smaller they are, the more desirable) in accordance with the CR 
and LBR decomposition equations above. Note that if the forecasts are perfect and hence the 
parallelograms are compressed into the diagonal line, the blue areas are at maximum and the 
red areas vanish. 

3.3.6 Reliability 

Reliability measures the mean bias between the forecast event and the verifying observations 
for a specific forecast event. The forecasts are said to be reliable if the average of the verifying 
observations for a specific forecast event, that is, the conditional mean of the verifying 
observations for a forecast event, is the same as the forecast event itself for all forecast 
events. For example, single-valued streamflow forecasts of 500 m3/s are reliable, or 
conditionally unbiased in the type I error sense, if the average verifying observed flow is 
500 m3/s. Climatological forecasts, albeit not very accurate, are reliable because the average 
verifying observation is always the same as the forecast itself.  

Figure 3 shows an idealized example of perfectly reliable single-valued forecasts versus the 
verifying observations. The blue dots represent the averages of all verifying observations for 
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the specific forecast events selected. In Figure 3(a), because the above averages lie on the 
midpoints of the imaginary vertical lines within the parallelogram, the blue dots line up on the 
dashed 45° line, resulting in REL = 0 and hence no visible red area. Note in Figure 3(a) that 
the forecasts in this idealized example are never larger or smaller than the largest and the 
smallest conditional mean of the verifying observations, respectively. The above geometry 
suppresses false positives (that is, type I error) and hence type I conditional bias. Recall that, 
in flood forecasting, a false positive, or false alarm, occurs when flooding is forecast but does 
not occur (see section 4.2). Figure 3(a) illustrates that reliability measures type I conditional 
bias, and that a departure of the blue dots from the diagonal in either direction indicates that 
the forecasts are less than reliable.  

3.3.7 Resolution 

Resolution measures the forecast’s ability to differentiate between different observed 
outcomes. For example, if the forecasts have good resolution, the average verifying observed 
flow for forecasts of 500 m3/s is significantly different from that for forecasts of 200 m3/s. 
Resolution is measured in Figure 3(a) by the average, over all forecast events, of the square of 
the vertical distance of a blue dot from the mean of all observations indicated by the dotted 
horizontal line. Hence, the blue triangles in Figure 3(a) represent the area contributing to RES. 
Pictorially, resolution is reflected in the overall slope of the blue dots. If the slope is zero, the 
observed outcome is the same regardless of the forecast, and hence RES is zero (this is akin to 
the slope in regular linear regression). If the slope is non-zero, the larger the slope is, the 
larger the resolution is. Note, however, that, for the same MSE (that is, given the same 
accuracy), increasing resolution (increasing the magnitude of RES in the CR decomposition 
equation) can only be achieved at the expense of deteriorating type I conditional bias (that is, 
increasing REL in the CR decomposition equation). 

 
Figure 3. Idealized scatterplot of forecasts with no type I conditional bias (REL = 0) 
versus verifying observations under (a) CR decomposition (into REL and RES) and 

(b) LBR decomposition (into T2B and DIS). The blue and red areas contribute 
positively and negatively to the MSE, respectively. 

3.3.8 Uncertainty 

Uncertainty is a measure of the variability of the predictand, and is given by the variance of 
the observation. For streamflow and precipitation, which are generally skewed and 
heteroscedastic, UNC may easily stretch from a few to several orders of magnitude. Often, the 
relative importance of different forecast attributes varies significantly with the magnitude of 
variability in UNC. For streamflow verification, assessment of UNC with respect to various 
physiographic attributes provides very useful guidance on possible stratification, data pooling 
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or conditioning of the verification dataset and the overall verification strategy. Such attributes 
may include season, flow regime, flow magnitude, hydrograph response, whether the locations 
are in the headwaters or downstream, and others. Flow duration curves (Searcy, 1959), which 
have been used in hydrology and water resources engineering for many decades, are useful for 
such purposes. 

3.3.9 Type II conditional bias 

Type II conditional bias measures the mean bias in the forecast for specific observed events. 
For example, if the single-valued flow forecasts for the common verifying observation of 
500 m3/s have a mean of 700 m3/s, the forecasts have a positive type II conditional bias of 
200 (= 700 – 500) m3/s. Figure 3(b) shows the same scatterplot shown in Figure 3(a) but with 
the LBR decomposition. A blue dot in Figure 3(b) represents the average of all forecasts 
associated with a specific observed event (that is, the conditional mean of the forecasts for an 
observed event). Because the average of all forecasts along a horizontal line within the 
parallelogram is the midpoint of that horizontal line segment, the blue dots line up along the 
longer diagonal of the parallelogram. If the above conditional mean is the same as the 
observed event across all observed events, the forecasts have no type II conditional bias. The 
red triangles in Figure 3(b) hence represent the area contributing to type II conditional bias 
over all observed events.  

Figure 3 shows that the idealized forecasts, while perfectly reliable, are conditionally biased in 
the type II error sense. The parallelogram in this idealized example is bounded by two vertical 
sides. Hence, the dynamic range of the forecast is always smaller than that of the verifying 
observation, leading to false negatives, or misses, and hence type II conditional bias. A false 
negative occurs in flood forecasting when flooding is not forecast but does occur (see 
section 4.2). 

3.3.10 Discrimination 

Discrimination measures the degree by which the forecasts are different for different observed 
events. If the average streamflow forecast for high-flow events tends to be different from that 
for low-flow events, the forecasts are discriminatory. Climatological forecasts are not 
discriminatory, since the average forecast is the same regardless of the observed event. In the 
LBR decomposition equation, DIS is defined as the difference squared, averaged over all 
observed events, between the average of all forecasts associated with a specific observed 
event and the average of all forecasts. The difference above is represented in Figure 3(b) by 
the distance between a blue dot and the dotted vertical line representing the average of all 
forecasts. Hence, the blue triangles in Figure 3(b) represent the area contributing to DIS. 
Analogously to RES, DIS is reflected in the overall slope of the blue dots. If the slope is 
infinitely large (or if it is zero in reverse regression in the context of regression), the forecasts 
are the same regardless of the observed event and hence DIS is zero.  

Analogously to Figure 3, one may also consider the MSE decompositions under no type II 
conditional bias. Figure 4(a) and (b) show the LBR and CR decompositions, respectively, in a 
second idealized scatterplot. Note that, whereas the parallelogram in Figure 3 has two vertical 
sides, that in Figure 4 has two horizontal sides. Although the forecasts in Figure 4 have no 
type II conditional bias (that is, T2B = 0, as the blue dots line up on the diagonal in 
Figure 4(a)), they are conditionally biased in the type I error sense (that is, they are less than 
reliable, with a positive REL corresponding to the red areas in Figure 4(b)). The inherent 
conflict in reducing REL versus reducing T2B without reducing MSE reflects the fact that 
improving reliability and reducing type II conditional bias is a zero-sum game, that is, zero T2B 
in Figure 4 can only be achieved by issuing a larger number of forecasts that are outside of the 
range of the observed events, which increases false positives, or false alarms, and hence 
reduces reliability. 
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Figure 4. Idealized scatterplot of forecasts with no type II conditional bias versus 

verifying observations under (a) LBR decomposition (into T2B and DIS components) 
and (b) CR decomposition (into REL and RES components). The blue and red areas 

contribute positively and negatively to the MSE, respectively. 

3.3.11 Sharpness 

The SHA component is a measure of the variability of the forecast and is given by its variance. 
Single-valued forecasts with very limited dynamic range have very small sample variance and 
hence small SHA. Note in the LBR decomposition equation that, given the same MSE, SHA can 
only be reduced at the expense of deteriorating type II conditional bias or discrimination. 
Conversely, given the same MSE, type II conditional bias or discrimination can only be 
improved by increasing the variability of the forecast. Figures 3 and 4 illustrate the above point 
in that the elimination of type II conditional bias in Figure 4(a) is achieved by increasing the 
dynamic range of the forecast (hence larger SHA) in comparison with Figure 3(b). 

Though SHA is described above under the heading of sharpness, the common definition of 
sharpness for probabilistic forecasts is different from the definition of SHA. This is a potential 
source of confusion and is explained in section 4.2.2 with the aid of the statistical estimators 
for the components of the LBR decomposition of the Brier score (BS). 

3.3.12 Illustrative example 

With the definitions of the attributes associated with the MSE decomposition for single-valued 
forecasts on hand, we now return to the toy example of Figure 2 and comparatively assess the 
attributes of forecasts A and B. Figure 5(a) is analogous to Figures 3(a) and 4(b) and may be 
used to assess reliability and resolution. The solid cyan circles and triangles in Figure 5(a) 
represent sample means of the verifying observations conditional on forecasts A and B falling 
within each subrange indicated by the gray vertical bars, respectively. In the legend, 
E[OBS|FCST A] denotes the mean observed stage given that forecast A falls in a specific 
subrange. Other similar notations are analogously defined.  

Figure 5(a) indicates that, within its dynamic range, forecast A is very reliable (very small REL) 
and has good resolution (large RES), whereas forecast B is less reliable (larger REL) and has 
reduced resolution (smaller RES). One may also surmise that forecast A has better resolution 
within its dynamic range than forecast B from the larger slope of the scatter associated with 
forecast A. It is important to note in Figure 5(a) that sample conditional means for forecast A 
could not be calculated for the two largest subranges due to the limited dynamic range of 
forecast A. Hence, REL and RES for forecast A, by themselves, provide little information about 
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the quality of the forecast for large-to-extreme events whose magnitude may exceed the 
dynamic range of the forecast. 

 
Figure 5. Scatterplots of forecasts A and B versus verifying observations. The solid 

markers denote the averages of all verifying observations/forecasts within the 
respective vertical/horizontal strips. The distance between a solid marker and the 

diagonal represents type I/II conditional bias in the forecast specific to the 
corresponding subrange of the forecast/verifying observation.  

Figure 5(b) is analogous to Figure 3(b) and Figure 4(a) and may be used to assess type II 
conditional bias and discrimination. The solid cyan circles and triangles in Figure 5(b) represent 
sample means of forecasts A and B conditional on the verifying observation falling within each 
subrange indicated by the gray horizontal bars, respectively. Figure 5(b) indicates that 
forecast A has large type II conditional bias (large T2B) and relatively modest discrimination 
(modest DIS), whereas forecast B has smaller type II conditional bias (smaller T2B) and better 
discrimination (larger DIS) than forecast A. One may also surmise that forecast B has better 
discrimination than forecast A from the smaller slope of the scatter associated with forecast B. 
Forecasts A and B have sample standard deviation of 0.12 and 0.15 (m), respectively. Hence, 
forecast B has larger SHA than forecast A in agreement with the observation in the scatterplots 
that forecast B has a larger dynamic range than forecast A.  

With the key attributes reviewed above, it is instructive to consider an example of how 
verification may help improve hydrological forecasting in a changing (that is, nonstationary) 
world. A case in point is the balanced reduction of type I and type II errors, an age-old 
challenge in estimation and prediction in general (Lieberman and Cunningham, 2009). With 
urbanization, land cover changes and climate change, accurate hydrological forecasting of 
large-to-extreme events is an increasingly important yet challenging endeavour. For such 
events, the negative consequences of a false negative (that is, failing to see the wolf) are often 
significantly larger than that of a false positive (that is, crying wolf when there is none). 
Hence, objective and coherent assessment of the trade-offs among different forecast attributes 
and their possible variations across different flow regimes is an increasingly important element 
of operational hydrological forecasting for which hydrological verification is essential. 

3.4 Forecast attributes in the context of probabilistic forecasts 

This section illustrates the various aspects of forecast quality for probabilistic verification using 
hypothetical ensemble forecasts. To aid intuitive understanding, the ensemble forecasts are 
represented in box-and-whisker plots as shown in Figure 6 in emulation of scatter plots for 
single-valued forecasts. An ensemble forecast is a probability distribution defined empirically 
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by its ensemble members. The box and whiskers for each ensemble forecast provides a 
simplified representation of this probability distribution. In Figure 6, each box contains the 
20th to 80th percentiles of the ensemble members, with the median indicated by the bar 
within the box. The whiskers extend from the smallest to the largest ensemble member. 

 
Figure 6. Scatterplot-like representation of hypothetical ensemble forecasts and 

verifying observations. Each ensemble forecast is represented by a box and 
whiskers. The solid line shows the 1:1 relationship between the ensemble forecasts 

and the observations. 

In the following subsections, the most widely used attributes of probabilistic forecasts are 
described (Wilks, 2011; Jolliffe and Stephenson, 2012; Murphy, 1997; Bradley et al., 2019). In 
the conceptual illustrations, the hypothetical ensemble forecasts are for streamflow. In some 
examples, the ensemble streamflow forecasts are used to forecast the probability of 
streamflow exceeding some threshold (such as a flood level). In these cases, the exceedance 
probability is given by the fraction of the ensemble members above the threshold. The 
verifying observation for a probability forecast is its indicator variable representation, that is, 1 
if the observed flow exceeds the threshold, and 0 otherwise. The fraction of the observations 
exceeding the threshold in the verification dataset gives the observed frequency of flooding.  

3.4.1 Bias 

For probabilistic forecasts, bias refers to systematic error in forecast probability and hence 
relates to questions such as: Are the probabilistic flood forecasts consistently over- or under-
prescribing the probability of flooding? If so, there is a systematic bias in the probabilistic 
forecasts. If the forecast probability of streamflow exceeding some threshold is consistently 
lower or higher than the fraction of the times when the verifying observed flow exceeds the 
threshold, the probability forecast has a negative (or low) or positive (or high) bias, that is, a 
tendency to under- or over-forecast probability, respectively. 

In verification of probabilistic forecasts, reliability (that is, type I conditional bias) and type II 
conditional bias are routinely assessed directly or indirectly. If the probabilistic forecast is 
conditionally unbiased for all conditioning events, it is unconditionally unbiased, or simply 
unbiased. Hence, assessing conditional biases also assesses (unconditional) unbiasedness in 
probabilistic verification. For ensemble forecast, unconditional bias in distribution may be 
assessed without assessing conditional bias via the rank histogram, also known as the 
Talagrand diagram (see Chapter 4). The rank histogram does not consider the joint 
relationship between the forecast and the verifying observation but only checks if the 
ensemble members and the verifying observation are mutually independent realizations of the 
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same probability distribution (Stephenson and Jolliffe, 2003), that is, if the verifying 
observation is statistically just another ensemble member of the forecast distribution.  

3.4.2 Correlation 

For verification of probabilistic forecasts, the strength of association between the forecast 
probability and the categorized verifying observation is reflected in reliability, resolution, 
type II conditional bias and discrimination following the BS decomposition (see section 4.3.2 
and 0). For this reason, correlation is not separately considered in probabilistic verification. 

3.4.3 Accuracy 

For probabilistic forecasts, accuracy refers to the level of agreement between the probability 
forecasts and the verifying observations. The verifying observation for a probability forecast is 
its indicator variable representation: 1 if the forecast event is observed and 0 otherwise. The 
most widely used measure of accuracy for probabilistic forecasts of binary events is the Brier 
score (BS), which is a MSE of probability forecasts. The most widely used measure of accuracy 
over the entire range of a probabilistic forecast is the continuous ranked probability score 
(CRPS). The CRPS is the integration over the range of the forecast of the difference between 
the forecasted exceedance probability and the step function representation in probability space 
of the verifying observation squared (that is, integration of the BS over the range of the 
forecast). The BS and CRPS are described in detail in Chapter 4. The smaller the CRPS, the 
more accurate the probabilistic forecast is. Figure 7(a) illustrates highly accurate ensemble 
forecasts which agree closely with the observed outcomes (and hence a small mean CRPS). In 
contrast, the ensemble forecasts in Figure 7(b) exhibit significantly larger forecast errors, 
which indicates lower accuracy (and hence a significantly larger mean CRPS). 

  
Figure 7. Illustrative examples of (a) highly accurate ensemble forecasts and 
(b) ensemble forecasts with lower accuracy with the one-to-one line overlaid 

3.4.4 Skill 

As with single-valued forecast, skill for probabilistic forecast describes the accuracy of the 
subject forecast relative to a reference probabilistic forecast or benchmark of choice. The 
choice of the reference depends on a number of factors, including the temporal scale of 
interest. For example, short-term forecasts for the next few hours must be more skilful than 
persistence, which assumes that the current condition, such as the most recently observed 
flow or water level, will persist into the future. Climatology should be explicitly defined when 
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used as a benchmark for assessing skill. Unconditional climatology should be estimated from a 
long record of observations, ideally for a longer period than the sample climatology from the 
verification dataset. However, seasonal climatology (climatology of all observed outcomes over 
many years stratified according to season), calendar day-specific climatology (climatology for 
the same day of the year across all historical years) or climatology from some other time scale 
may provide a more useful baseline. Pappenberger et al. (2015) discuss how to choose a 
benchmark forecast to evaluate hydrological ensemble forecasts and how to avoid benchmarks 
that are too simplistic (see references therein for examples of benchmarks based on 
climatology, persistence and simplified models). 

Skill scores for probabilistic forecasts are defined in the same way as those for single-valued 
forecasts (see Equation 1). The BS and mean CRPS are the most widely used measures for 
accuracy of probabilistic forecasts. Hence, their skill scores, the Brier skill score (BSS) and the 
mean continuous ranked probability skill score (CRPSS), are the most widely used among the 
skill scores in probabilistic verification. The BS and mean CRPS of a perfect forecast are zero, 
and hence their respective skill scores are given by Equation 2. Skill scores are particularly 
useful when comparing forecasts across different hydroclimatic regimes and forecast locations, 
as they measure the increase in accuracy of a forecast due to the “smarts” (that is, predictive 
skill) of the forecast system and not simply because the outcome is easier to predict (that is, 
the predictand has larger predictability). Care must be exercised, however, in interpreting 
certain skill scores without hydrological context, as explained in different parts of these 
guidelines. 

The remainder of this chapter describes the attributes associated with the CR and LBR 
decompositions of the BS for probabilistic forecasts of binary events such as flooding and no 
flooding. As noted above, the BS is a MSE in probability space. Hence, the CR and LBR 
decompositions described for single-valued forecasts still apply. However, the assessment and 
interpretation of the attributes for probabilistic forecasts require some care and familiarization, 
as the forecasts and verifying observations are no longer in physical space, and the 
decompositions are specific to the definition of the binary events. 

3.4.5 Reliability 

For probabilistic forecasts, reliability answers questions such as: When the forecast says 80% 
probability of flooding, does flooding actually occur 80% of the time? If this is the case for all 
possible forecast probabilities of exceedance, the probabilistic forecasts are reliable. Formally, 
probabilistic forecasts are reliable, or conditionally unbiased in the type I error sense, if the 
forecast events are observed as frequently on average as indicated by the forecast 
probabilities. In such a case, the reliability component of the BS (that is, REL in the CR 
decomposition equation) vanishes. For example, probability forecasts for flooding of 0.2 are 
reliable at this specific level of forecast probability if flooding is observed 20% of the time 
whenever the forecast indicates a 20% chance of flooding.  

If the probability forecasts are similarly reliable at all levels of forecast probability, the 
forecasts are said to be “well calibrated”. The expression stems from the fact that, given a 
large enough sample size and the assumption of stationarity, probabilistic forecasts can always 
be made reliable via postprocessing or calibration. Calculation of reliability measures typically 
involves binning the forecasts into non-overlapping subranges within the dynamic range of the 
forecast and counting the verifying observations for each bin (see Chapter 4). 

Figures 8(a) and (b) show two examples of reliable ensemble forecasts at specific levels of 
forecast probability. To keep the examples as simple as possible, this chapter only considers 
observed outcomes of flooding and no flooding. One may apply, however, different thresholds 
or event definitions with no loss of generality as long as the events are mutually exclusive and 
collectively exhaustive. Figure 8(a) and (b) are for forecasts of 80% and 20% chance of 
flooding, respectively. If the forecasts are reliable, one would expect 80% and 20% of the 
verifying observations to report flooding. Figure 8(a) and (b) show that such is indeed the 
case, as eight and two out of ten verifying observations exceed the flood level, respectively.  
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Figure 8(c) combines simpler renditions of Figure 8(a) and (b) into a single plot and is shown 
to illustrate how multiple reliable ensemble forecasts may collectively appear versus verifying 
observations in physical space. Whereas Figure 8(a) and (b) are based only on a single 
threshold (that is, the flood level), reliability is usually assessed with respect to multiple 
thresholds that encompass low to high flows for verification of ensemble streamflow forecasts. 
If all ensemble forecasts are reliable at all thresholds and their box-and-whisker plots are 
combined into a single plot, one may expect them to form a broad cluster around the one-to-
one line, similar to the parallelogram in Figure 3. Figure 8(c) helps visualize how such a plot 
may look. 

 

 
Figure 8. Illustrative examples of perfectly reliable ensemble forecasts for forecast 

probability of (a) 0.8 and (b) 0.2; (c) combination of simplified renditions of (a) and (b). 

3.4.6 Resolution 

Resolution measures the forecast’s ability to differentiate different observed outcomes. 
Probability forecasts for flooding versus no flooding have good resolution if the forecasts of 
different probabilities of flooding differentiate the verifying observations of flooding from those 
of no flooding. Figure 9 shows examples of ensemble forecasts with good and poor resolution. 
In Figure 9(a), there are two forecast probabilities of flooding, 80% and 20%. For the forecast 
probability of flooding of 80%, four out of five verifying observations report flooding (that is, 
the observed frequency of flooding is 80%). For the forecast probability of flooding of 20%, 
one out of five verifying observations reports flooding (that is, the observed frequency of 
flooding is 20%). The outcome of 80% of the verifying observations reporting flooding is 
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significantly different from that of 20%. Hence, the probability forecasts in Figure 9(a) have 
good resolution. Note that, in this example, the observed frequencies of flooding are the same 
as the forecast probabilities. Hence, the probability forecasts in Figure 9(a) are also reliable.  

In Figure 9(b), the forecast probabilities of flooding are the same as those in the first example. 
However, for both forecast probabilities, two out of five verifying observations report flooding 
(that is, the observed frequency of flooding is the same at 40% despite the large difference in 
the forecast probabilities). Hence, the ensemble forecasts in Figure 9(b) have poor resolution. 
Recall in section 3.3 that the scatters of single-valued forecasts with no resolution have a slope 
of zero versus verifying observations. A similar interpretation applies in Figure 9 in that the 
box-and-whisker plots of ensemble forecasts with no resolution tend to form a cluster with no 
slope. 

 
Figure 9. Illustrative examples of ensemble forecasts with (a) good and (b) poor 

resolution 

3.4.7 Uncertainty 

For probabilistic forecasting of flooding or no flooding, UNC is given by the variance of a 
Bernoulli random variable (for example, a coin toss), that is, 𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓 (1 − 𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓), 0  ≤  𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓  ≤  1 , 
where 𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓 is the observed exceedance probability or frequency (Drake, 1967). Hence, UNC is 
at maximum when 𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓 = 0.5 and vanishes as 𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓 approaches 1 or 0. The above implies that, 
the higher the flood level is, the smaller the UNC component of the BS is. For probabilistic 
forecasts, this “smallness” of UNC for rare events has no connection to the physical world but 
simply reflects the fact that, with a high flood level, almost all verifying observations are for no 
flooding, and hence the variability of the observed outcome is extremely small in probability 
space. Figure 10(a) and (b) show illustrative examples of observations with large and small 
uncertainty in their indicator representation, respectively. 
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Figure 10. Illustrative examples of observations with (a) large and (b) small 

uncertainty in the binary outcome of flooding or no flooding 

3.4.8 Type II conditional bias 

For probability forecasts of flooding versus no flooding, type II conditional bias measures the 
departure or difference of the average forecast probabilities of flooding and no flooding from 
the indicator representation of the verifying observed events of flooding and no flooding (that 
is, 1 and 0, respectively). If the differences are small, the forecasts have small type II 
conditional bias, and if the differences are large, the forecasts have large type II conditional 
bias. Unlike reliability, type II conditional bias is not calibratable because, having failed to 
detect the events, the forecasts contributing to type II conditional bias are null. 

Figure 11 shows examples of ensemble forecasts with small and large type II conditional bias. 
In Figure 11(a), the average forecast probabilities of flooding for the two groups of five 
ensemble forecasts associated with the observed event of flooding and no flooding are very 
close to 1 and 0, respectively. Hence, the ensemble forecasts in Figure 11(a) have small 
type II conditional bias. In Figure 11(b), the situation is reversed, and the ensemble forecasts 
are severely conditionally biased in the type II error sense. 

 
Figure 11. Illustrative examples of ensemble forecasts with (a) small and (b) very 

large type II conditional bias 
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3.4.9 Discrimination 

Probabilistic forecasts for flooding versus no flooding are discriminatory if the average forecast 
probabilities differ significantly, with no regard to their accuracy, between the observed events 
of flooding and no flooding. Climatological forecasts are not discriminatory because the 
forecast is the same regardless of the observed event. Discrimination is measured by the 
differences between the (unconditional) average forecast probability of flooding and the 
average forecast probabilities associated with the observed events of flooding and no flooding. 
Measures of discrimination average the squared difference over the observed events of 
flooding and no flooding. Calculation of discrimination measures typically involve binning the 
verifying observations into the flooding and no flooding categories and sorting the forecasts 
into the respective bins (see Chapter 4). 

Figure 12 shows examples of good and poor discrimination. In Figure 12(a), the average 
forecast probabilities differ significantly between the ensemble forecasts associated with the 
verifying observations of flooding and those of no flooding, thus exhibiting good discrimination. 
In Figure 12(b), the average forecast probabilities differ little between the two groups of 
ensemble forecasts, exhibiting no discrimination. Similarly to single-valued forecasts (see 
section 3.3), the fact that the box-and-whisker plots align vertically (that is, the slope is 
infinitely large) is an indication that the forecasts lack discrimination. 

 
Figure 12. Illustrative examples of ensemble forecasts with (a) good and (b) poor 

discrimination 

3.4.10 Sharpness 

For probability forecasts, sharpness measures the tendency to predict with probabilities close 
to 0 or 1 (that is, “stick its neck out” by having all or most ensemble members predict either 
flooding or no flooding in the case of ensemble flood forecasting). Probability forecasts are said 
to be sharp if they tend to issue probabilities close to 0 or 1. A high degree of sharpness is 
desirable only if it improves the overall forecast accuracy. Hence, the merit of sharpness 
depends on the assessment of other attributes. With T2B and DIS being equal, a sharp 
forecast is preferred to an unsharp forecast, since sharpness improves accuracy.  

Figure 13(a) and (b) shows examples of unsharp and sharp ensemble forecasts, respectively. 
In Figure 13(a), all ensemble forecasts indicate approximately 50% chance of flooding (or no 
flooding), thus exhibiting poor sharpness. In Figure 13(b), each ensemble forecast indicates a 
near-100% or 100% chance of either flooding or no flooding. These forecasts are extremely 
confident (correctly or not) about flooding versus no flooding and hence are very sharp. 
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Figure 13. Illustrative examples of (a) unsharp and (b) sharp ensemble forecasts 

In practice, multiple forecast attributes are generally necessary to assess forecast quality. 
Depending on the application and the user’s risk perception and aversion, some attributes may 
be more important than others. Regardless of the application, quality control of the verification 
dataset is a prerequisite for verification. Visualization of forecasts and verifying observations 
using time series, scatterplots or box-and-whisker plots is often extremely helpful in identifying 
data issues, understanding the nature of the forecast, and recognizing visible weaknesses in 
the forecast (for example, in high flow conditions). The EVS provides multiple variations of the 
box-and-whisker plot representation of ensemble forecasts for this purpose. Certain aspects of 
forecast quality may be analysed visually first for qualitative assessment (similarly to the 
conceptual illustrations used in this chapter). Specific aspects may then be analysed 
numerically with verification measures for quantitative assessment. For the latter, Chapter 4 
presents the commonly used verification metrics and their graphical representations.  
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3.5 Key points 

• Forecast quality is assessed by comparing forecasts with verifying observations (or high-
quality estimates) under the assumption that they are realizations of IID random 
variables. The relationship between the two is then described wholly by their joint 
distribution. Multiple attributes of forecast quality are necessary to describe the essence 
of this distribution. 

• Accuracy describes the overall level of agreement between the forecasts and their 
verifying observations and hence is most representative of forecast quality. Measures of 
accuracy, such as the RMSE and mean CRPS for single-valued and probabilistic forecasts, 
respectively, reflect multiple attributes that are largely independent of one another in 
information content, such as correlation and biases in the mean and standard deviation in 
the case of the RMSE. 

• Skill describes the relative accuracy of the subject forecast in comparison with a 
reference forecast or benchmark of choice. The reference forecast may be climatology, 
persistence or a forecast produced from a baseline forecast system. Skill scores calculate 
percent improvement in the accuracy metrics of choice by the subject forecast over the 
reference forecast. The Nash–Sutcliffe efficiency, which is very widely used in calibration 
of hydrological models, is an example of the MSE skill score. 

• Several attributes of probabilistic forecasts arise from decomposing the joint probability 
distribution of the forecast and the verifying observation into the conditional and 
marginal distributions.  

• In probabilistic verification, reliability (or type I conditional bias), resolution and 
uncertainty arise from conditioning on the forecast via the calibration–resolution (CR) 
decomposition, whereas type II conditional bias, discrimination and sharpness arise from 
conditioning on the observation via the likelihood–base rate (LBR) decomposition. 

• Though verification and prediction are different, it is helpful to relate the CR 
decomposition with forward (that is, regular) linear regression and the LBR 
decomposition with reverse regression (that is, regression with the predictor and the 
predictand interchanged). It is also helpful to consider the CR and LBR decompositions as 
characterizing forecast quality from the perspective of reducing false alarms (crying wolf 
when there are none) and misses (failing to see the wolf), respectively, given the same 
absolute accuracy in the forecast. 

• Reliability, resolution, type II conditional bias and discrimination are competing attributes 
given the absolute accuracy of the forecast. Specifically, reducing type I and type II 
conditional biases is a zero-sum game unless absolute accuracy is improved. Hence, 
assessment of individual forecast attributes is critical to assessing the trade-offs, guiding 
improvements in forecast systems and processes, and improving application-specific 
decisions based on the user’s risk perception and tolerance. 

• In the CR decomposition, uncertainty reflects predictability of the variable being verified. 
In the LBR decomposition, sharpness measures the forecast’s ability to “stick its neck 
out”, correctly or incorrectly. Though these two attributes do not pertain to the joint 
relationship between forecast and observation, they contribute to the overall accuracy 
and hence should be assessed. When assessing uncertainty, it is a good practice to 
consider skewness (asymmetry in distribution) and heteroscedasticity (nonuniformity in 
variability) to aid possible stratification, pooling or conditioning of the forecast–
observation pairs. 

• The above points regarding probabilistic verification mean that, between reliability and 
resolution and between type II conditional bias and discrimination, it is generally 
necessary to assess only one of the two attributes in each pair. Commonly, the choices 
are reliability and discrimination. 
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CHAPTER 4. COMMONLY USED VERIFICATION METRICS 

A wide range of verification metrics have emerged in the atmospheric sciences (Jolliffe and 
Stephenson, 2012; Wilks, 2011; Casati et al., 2008) and in other disciplines (Stephenson and 
Jolliffe, 2003). More recently, existing verification metrics have been adapted or newly 
developed to meet specific needs in hydrology and water resources applications and to provide 
meaningful verification results to specific user groups (see, for example, Brown et al., 2010; 
Liu et al., 2011; Zappa et al., 2013). Anctil and Ramos (2019) present a wide range of 
examples of hydrological verification, highlighting the various objectives, forecast–observation 
datasets and verification metrics reported in the literature. The Joint Working Group on 
Forecast Verification Research of the World Weather Research Programme (WWRP) and the 
Working Group on Numerical Experimentation maintains a reference website describing the 
standard and newly-developed verification metrics: 
https://www.cawcr.gov.au/projects/verification/.  

Many of the metrics may be found in verification software such as the Ensemble Verification 
System (EVS) (Brown et al., 2010) (see https://sourceforge.net/projects/ensemble-
verification-system/). Developed originally by the United States National Weather Service 
(NWS) in support of operational hydrological forecasting, the EVS is a freely available open-
source software tool for verification of ensemble forecasts of hydrological and 
hydrometeorological variables such as streamflow, precipitation and temperature. One may 
also use the EVS for verification of single-valued forecasts as one-member ensemble forecasts 
(see Cases 1 and 2 in Chapter 7). The EVS includes detailed documentation of a 
comprehensive set of verification metrics, including new and more application-oriented 
additions. As indicated in Tables 1 and 2, Chapter 7 and Appendix A present several case 
studies with interpretations of the verification metrics and diagrams. The case studies include 
hands-on examples using the EVS, Python packages, R and MATLAB scripts. 

4.1 Introduction 

An array of widely used verification metrics is applied in hydrological verification of single-
valued (deterministic) and probabilistic forecasts. The former may be deterministic forecasts or 
single-valued reductions of ensemble forecasts. The latter may be in the form of ensembles or 
probability distributions. Table 5 lists the verification metrics commonly used in operational 
water and weather forecasting as grouped by forecast quality attribute. Given the verification 
task, one may determine the forecast type, identify the forecast attributes to be assessed and 
select the verification metrics from the table. 

Table 5. Verification metrics commonly used in operational water and weather 
forecasting as grouped by forecast quality attribute 

Attribute Metric name Type of forecast Discrete 
events? 

Accuracy 

Mean absolute error (MAE) 

Mean squared error (MSE) 

Root mean squared error (RMSE) 

Critical success index (or threat score) 

Mean continuous ranked probability score (CRPS)  

Brier score (BS) 

Ranked probability score (RPS) 

Single-valued 

Single-valued 

Single-valued 

Single-valued 

Probabilistic 

Probabilistic 

Probabilistic 

No 

No 

No 

Yes 

No 

Yes 

Yes 

https://www.cawcr.gov.au/projects/verification/
https://sourceforge.net/projects/ensemble-verification-system/
https://sourceforge.net/projects/ensemble-verification-system/
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Attribute Metric name Type of forecast Discrete 
events? 

Bias (first order) 

Relative mean error (or relative bias) 

Frequency bias (FB) 

Mean error (ME) 

Single-valued 

Single-valued 

Single-valued 

No 

Yes 

No 

Correlation  
Pearson correlation coefficient (CORR) 

Spearman rank correlation 

Single-valued 

Single-valued 

No 

No 

Skill  

Mean absolute error skill score (MAESS) 

Mean squared error skill score (MSESS) 

Equitable threat score (or Gilbert skill score) 

Mean continuous ranked probability skill score 
(CRPSS) 

Brier skill score (BSS) 

Ranked probability skill score (RPSS) 

Single-valued 

Single-valued 

Single-valued 

Probabilistic 
 

Probabilistic 

Probabilistic 

No 

No 

Yes 

No 
 

Yes 

Yes 

Reliability (type I 
conditional bias) 

Mean squared error reliability 

Success ratio 

Mean CRPS reliability 

Brier score reliability 

Reliability diagram  

Rank histogram (or Talagrand diagram) 

Spread-bias diagram 

Single-valued 

Single-valued 

Probabilistic 

Probabilistic 

Probabilistic 

Probabilistic  

Probabilistic 

No 

Yes 

No 

Yes 

Yes 

Yes 

No 

Resolution  

Mean squared error resolution 

Mean CRPS resolution 

Brier score resolution 

Single-valued 

Probabilistic 

Probabilistic 

No 

No 

Yes 

Type II conditional 
bias  

Mean squared error type II conditional bias 

Brier score type II conditional bias 

Single-valued 

Probabilistic 

No 

Yes 

Discrimination  

Mean squared error discrimination 

Probability of detection (or hit rate) 

Probability of false detection (or false alarm rate) 

Brier score discrimination 

Relative operating characteristic (ROC) curve 

ROC score 

Single-valued 

Single-valued 

Single-valued 

Probabilistic 

Both 

Both 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Sharpness  

Forecast frequency histogram 

Average width of the prediction intervals 

Variance 

Standard deviation 

Probabilistic 

Probabilistic 

Both  

Both 

Yes 

No 

No 

No 

Uncertainty  
Variance 

Standard deviation 

Both 

Both 

Yes 

Yes 



37 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 

The rest of this chapter is organized as follows. Sections 4.2 and 4.3 present the commonly 
used metrics for verification of discrete and continuous variables, respectively. The above 
sections also describe the metrics pertaining to the CR and LBR decompositions of the MSE and 
BS, and the CR decomposition of the mean CRPS. Section 4.4 discusses several practical 
considerations regarding selection of suitable metrics, intercomparison of verification results 
for different forecast locations and under different conditions, assessing sampling uncertainty 
associated with the verification statistics, and conditional verification for the assessment of 
flow regime-specific forecast quality. 

4.2 Metrics for categorical forecasts 

The verification metrics for forecasts of discrete events are presented in this section. This type 
of forecast has a limited number of possible outcomes. For streamflow forecasting, the 
simplest examples include forecasts for flooding and no flooding (applying a single threshold to 
streamflow), and those for major, minor and no flooding (applying two thresholds). When only 
a single threshold is used, the observed outcome is binary: either flooding is observed or not. 
When the observation is represented as an indicator variable, the outcome is 1 and 0 for 
flooding and no flooding, respectively. For single-valued forecasts, the categorical forecast is 
also binary: either flooding is forecast if the forecast exceeds the threshold, or no flooding is 
forecast if it does not exceed the threshold. For probabilistic forecasts, the forecast specifies 
the probability of exceeding the threshold, p, and the probability of not exceeding the 
threshold, 1 – p.  

4.2.1 Scores derived from the contingency table 

Contingency tables are used to describe the discrete joint distribution of forecast and 
observation in terms of the frequencies of occurrence for defined categories. For verification of 
binary forecasts, the 2 × 2 contingency table is defined as shown in Table 6. 

Table 6. Definition of the 2 × 2 contingency table for the verification of binary events 
(for example, flooding or no flooding) 

2 × 2 contingency table 
Event observed 

Total 
Yes No 

Event 
forecast 

Yes H (hits) FA (false alarms) H + FA 

No M (misses) TN (true negatives) M + TN 

Total H + M FA + TN H + M + FA + TN 

In Table 6, the rows and columns represent the forecast and observed categories, respectively. 
The yes- and no-events represent flooding and no flooding, respectively, for both observations 
and forecasts. For probabilistic forecasts, the table is derived for a given probability level to 
categorize each probability forecast as a yes-event if the forecast probability exceeds the 
chosen probability level, or a no-event otherwise. The 2 × 2 contingency table includes the 
following entries: 

• Hits (H) indicates the number of true positives, that is, observed yes-events that were 
correctly forecast as yes-events; 

• False alarms (FA) indicates the number of false positives, that is, observed no-events 
that were incorrectly forecast as yes-events; 
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• Misses (M) indicates the number of false negatives, that is, observed yes-events that 
were incorrectly forecast as no-events; 

• True negatives (TN) indicates the number of observed no-events that were correctly 
forecast as no-events. 

The total number of observed yes- and no-events are H + M and FA + TN, respectively. The 
total number of forecast yes- and no-events are H + FA and M + TN, respectively. A number of 
verification scores may be derived from the contingency table as described below. 

The probability of detection (POD), also known as the hit rate, is a measure of 
discrimination representing the proportion of the correctly forecast yes-events (hits) among all 
observed yes-events. For the 2 × 2 contingency table, the POD is given by: 

𝑃𝑃𝑃𝑃𝐷𝐷 =
𝑆𝑆

𝑆𝑆 + 𝑀𝑀
 (6) 

The POD ranges from 0 (all observed events are misses) to 1 (all observed events are hits); a 
perfect score is 1. 

The probability of false detection (POFD), also known as the false alarm rate, is a measure 
of discrimination representing the proportion of the incorrectly forecast no-events (false 
alarms) among all observed no-events. The POFD is defined as the number of false alarms 
divided by the total number of observed no-events. For the 2 × 2 contingency table, the POFD 
is given by:  

𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷 =
𝑃𝑃𝑆𝑆

𝑃𝑃𝑆𝑆 + 𝑇𝑇𝑈𝑈
 (7) 

The POFD ranges from 0 (no false alarms) to 1 (all observed no-events are false alarms); a 
perfect score is 0. 

The success ratio (SR) is a measure of reliability representing the proportion of the correctly 
forecast yes-events (hits) among all forecast yes-events. The SR is defined as the number of 
hits divided by the total number of forecast yes-events. For the 2 × 2 contingency table, the 
SR is given by:  

𝑆𝑆𝑅𝑅 =
𝑆𝑆

𝑆𝑆 + 𝑃𝑃𝑆𝑆
 (8) 

The SR ranges from 0 (all forecast yes-events are false alarms) to 1 (no false alarms); a 
perfect score is 1. The categorical performance diagram (Roebber, 2009) plots the POD as a 
function of the SR. 

The frequency bias (FB) is a measure of bias defined as the ratio of the total number of 
forecast yes-events divided by the total number of observed yes-events. For the 2 × 2 
contingency table, the FB is given by:  

𝑃𝑃𝐵𝐵 =
𝑆𝑆 + 𝑃𝑃𝑆𝑆
𝑆𝑆 + 𝑀𝑀

=
𝑃𝑃𝑃𝑃𝐷𝐷
𝑆𝑆𝑅𝑅

 (9) 

The FB ranges from 0 to infinity; a perfect score is 1. Values lower and higher than 1 indicate 
tendency for under-forecasting (too many misses) and over-forecasting (too many false 
alarms), respectively. 

The false alarm ratio (FAR) is a measure of reliability representing the proportion of the 
forecast yes-events that are false alarms. The FAR is defined as the number of false alarms 
divided by the total number of forecast yes-events. For the 2 × 2 contingency table, the FAR is 
given by: 
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𝑃𝑃𝑆𝑆𝑅𝑅 =
𝑃𝑃𝑆𝑆

𝑆𝑆 + 𝑃𝑃𝑆𝑆
= 1 − 𝑆𝑆𝑅𝑅 (10) 

The FAR ranges from 0 (no false alarms) to 1 (all forecast yes-events are false alarms); a 
perfect score is 0. 

The fraction correct (FC) represents the proportion of correct forecasts and is defined as the 
number of hits and true negatives divided by the total number of events. For the 2 × 2 
contingency table, the FC is given by: 

𝑃𝑃𝑈𝑈 =
𝑆𝑆 + 𝑇𝑇𝑈𝑈

𝑆𝑆 + 𝑀𝑀 + 𝑃𝑃𝑆𝑆 + 𝑇𝑇𝑈𝑈
 (11) 

The FC ranges from 0 to 1; a perfect score is 1. The FC is influenced by the number of true 
negatives. For rare yes-events with a very large number of no-events that are trivially easy to 
forecast most of the time, the score will be close to 1 owing to a very large number of true-
negatives (see the Finley affair in Chapter 2). For example, in the dry season in an arid region, 
there is only a miniscule chance of extreme flooding on any given day. Hence, by forecasting 
no extreme flooding every day, one can score very highly on the FC, even though such a 
technique has no chance of ever scoring a single hit. A better alternative, especially for rare 
events, is the CSI score, which accounts for hits, misses and false negatives. 

The critical success index (CSI), also called the threat score, represents the proportion of 
the correctly forecast yes-events among all yes-events, forecast or observed, and is defined as 
the number of hits divided by the number of hits, misses and false alarms combined. For the 
2 × 2 contingency table, the CSI is given by:  

𝑈𝑈𝑆𝑆𝐷𝐷 =
𝑆𝑆

(𝑆𝑆 + 𝑀𝑀 + 𝑃𝑃𝑆𝑆) =
1

1
𝑆𝑆𝑅𝑅 + 1

𝑃𝑃𝑃𝑃𝐷𝐷 − 1
 (12) 

The CSI ranges from 0 (no hits) to 1 (no misses and no false alarms); a perfect score is 1. The 
CSI may be interpreted as a measure of forecast accuracy without considering the true 
negatives.  

As some hits could occur due to random chance, a modified score known as the equitable 
threat score has also been defined.  

The equitable threat score (ETS), also called Gilbert skill score, represents the proportion of 
the correctly forecast yes-events over all yes-events, forecast or observed, adjusted for the 
hits due to random chance (one is more likely to correctly forecast the more frequently 
occurring events). The ETS is defined as the number of hits minus the number of hits due to 
random chance, divided by the sum of the number of hits, misses, and false alarms combined 
minus the number of hits due to random chance. For the 2 × 2 contingency table, the ETS is 
given by:  

𝑀𝑀𝑇𝑇𝑆𝑆 =
(𝑆𝑆 − 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

(𝑆𝑆 + 𝑀𝑀 + 𝑃𝑃𝑆𝑆 − 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 
(13) 

where 

𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
(𝑆𝑆 + 𝑀𝑀) × (𝑆𝑆 + 𝑃𝑃𝑆𝑆)
(𝑆𝑆 + 𝑀𝑀 + 𝑃𝑃𝑆𝑆 + 𝑇𝑇𝑈𝑈) (14) 

The ETS ranges from –1/3 to 1, a value below 0 indicating no skill; a perfect score is 1. By 
considering hits due to random chance, the ETS allows fairer assessment of the skill of 
forecasts across different regimes.  
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The Peirce’s skill score (PSS, also called Hanssen and Kuipers discriminant) is a measure of 
skill in forecasting the yes- and no-events considering all four bins in the contingency table and 
is defined as the difference between the POD and the POFD. For the 2 × 2 contingency table, 
the PSS is given by: 

𝑃𝑃𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑃𝑃𝐷𝐷 − 𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷   (15) 

The PSS ranges from –1 to 1, a value below 0 indicating no skill; a perfect score is 1 (no 
misses and no false alarms). 

The base rate (BR) describes the rate of occurrence of the observed yes-events, and is 
defined as:  

𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆 𝑆𝑆𝐵𝐵𝑀𝑀𝑆𝑆 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 𝑆𝑆𝑓𝑓 𝑆𝑆𝑛𝑛𝐵𝐵𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑜𝑜 𝑦𝑦𝑆𝑆𝐵𝐵
𝑀𝑀𝑆𝑆𝑀𝑀𝐵𝐵𝑆𝑆 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 𝑆𝑆𝑓𝑓 𝑆𝑆𝑜𝑜𝑆𝑆𝑛𝑛𝑀𝑀𝐵𝐵

=
(𝑆𝑆 + 𝑀𝑀)

(𝑆𝑆 + 𝑀𝑀 + 𝑃𝑃𝑆𝑆 + 𝑇𝑇𝑈𝑈) 
(16) 

The BR is purely a characteristic of the observations, not the forecasts being evaluated, and 
varies between 0 and 1. 

The probability of forecast of occurrence (POFO) is equivalent to the BR but for the 
forecast yes-events, and is defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 𝑆𝑆𝑓𝑓 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝑀𝑀 𝑦𝑦𝑆𝑆𝐵𝐵
𝑀𝑀𝑆𝑆𝑀𝑀𝐵𝐵𝑆𝑆 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 𝑆𝑆𝑓𝑓 𝑆𝑆𝑜𝑜𝑆𝑆𝑛𝑛𝑀𝑀𝐵𝐵

=
(𝑆𝑆 + 𝑃𝑃𝑆𝑆)

(𝑆𝑆 + 𝑀𝑀 + 𝑃𝑃𝑆𝑆 + 𝑇𝑇𝑈𝑈) 
(17) 

The POFO ranges between 0 and 1. 

Contingency tables can also be defined with more than two categories. For example, the 3 × 3 
contingency table based on two different flood thresholds (Threshold1 and Threshold2) 
includes the following events for both the forecast and the observation:  

• {streamflow < Threshold1} 

• {Threshold1 ≤ streamflow < Threshold2} 

• {streamflow ≥ Threshold2} 

Each of the metrics derived from the contingency table may be defined for a specific category. 
Wilks (2011) details converting a 3 × 3 contingency table into three different 2 × 2 
contingency tables for each of the three categories and deriving the different contingency 
scores for each category. 

4.2.2 Scores for probabilistic categorical forecast 

There are two commonly used scores for verification of probabilistic categorical forecasts: the 
Brier score (BS) for binary events and the average ranked probability score (RPS) for 
categorical events. The original formulation of the BS (Brier, 1950) is applicable to categorical 
forecasts as well. In this document, however, only the binary form of the BS, sometimes 
referred to as the half BS, is used throughout. 

The Brier score (BS) is a MSE of probability forecasts for binary events and thus measures 
the accuracy of probability forecasts for binary events: 

𝐵𝐵𝑆𝑆 =
1
𝑛𝑛
Σ𝑘𝑘 = 1
𝑟𝑟 (𝑃𝑃𝑘𝑘 − 𝑃𝑃𝑘𝑘)2 (18) 

where n is the total number of forecast–observation pairs, Fk is the kth forecast probability of 
the occurrence of the event and Ok is the indicator representation of the verifying observed 
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outcome (that is, 1 if the event occurred and 0 otherwise). The BS ranges from 0 (perfect 
score) to 1. For example, if the probability forecast says 80% chance of discharge exceeding 
the flood level and flooding does occur, the squared error of the probability forecast is 
(0.8 – 1.0)² = (–0.2)² = 0.04. If flooding does not occur, the squared error of the probability 
forecast is (0.8 – 0)² = 0.64. 

A BS of 0 indicates a perfectly accurate (and hence perfectly sharp) probability forecast (that 
is, when the forecast indicates a probability of flooding of 1, flooding does occur). A BS of 1 
indicates a perfectly inaccurate (and perfectly sharp) forecast (that is, when the forecast 
indicates a probability of flooding of 0, flooding does occur). The BS is very useful when the 
consequences of being below and above a specific threshold, such as a flood level, are 
asymmetric. Figure 14 and Table 7 illustrate how to visualize and compute the BS with three 
different streamflow forecast–observation pairs. The two categories are defined with a flood 
threshold, denoted as Thrflood below:  

• No flooding if flow < Thrflood 

• Flooding if flow ≥ Thrflood 
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Forecast 1 

 
Forecast 2 

 
Forecast 3 

 
Figure 14. Illustrative examples of the BS for each of three different probability 

forecasts 
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Table 7. Computation of the BS for each of the three probability forecasts 
shown in Figure 14 

Forecast k 
Observed flow ≥ Thrflood? 

Ok = 1 if yes, 0 otherwise 

Forecast flood probability Fk 

= Prob [forecast flow ≥ Thrflood] 

BSk of kth forecast 

BSk = (Fk – Ok)² 

1 1 0.75 0.06 

2 0 0.50 0.25 

3 0 0.75 0.56 

   Σ = 0.87 

The BS for all three forecasts is the average of BSk, k = 1, 2, 3; 
BS = (0.06 + 0.25 + 0.56) / 3 = 0.87 / 3 = 0.29. 

The components of the BS under the CR decomposition (see Equation 62 in Appendix B) may 
be estimated via (Murphy, 1973): 

𝐵𝐵𝑆𝑆 =
1
𝑛𝑛
Σ𝑙𝑙 = 1
𝐿𝐿 𝑛𝑛𝑙𝑙�𝑃𝑃𝑙𝑙 − 𝑃𝑃𝑙𝑙�

2
−

1
𝑛𝑛
Σ𝑙𝑙 = 1
𝐿𝐿 𝑛𝑛𝑙𝑙�𝑃𝑃𝑙𝑙 −  𝑃𝑃�

2
+  𝑃𝑃�1 −  𝑃𝑃� (19) 

where the first, second and third terms represent REL, –RES and UNC, respectively, 𝑛𝑛 is the 
total number of forecast probability–binary observation pairs, 𝑅𝑅 is the number of bins for the 
forecast events that the individual forecast probabilities are subgrouped into, 𝑛𝑛𝑙𝑙 is the number 
of pairs in the 𝑆𝑆 th bin, 𝑃𝑃𝑙𝑙 is the mean of the binary observations associated with the forecast 
probabilities in the 𝑆𝑆 th bin, 𝑃𝑃𝑙𝑙 is the 𝑆𝑆 th forecast event and 𝑃𝑃 is the grand mean of all binary 
observations. The BS is a MSE of probability forecast. Hence, the expressions above for the BS 
are identical to those for the MSE (see section 4.3). The only difference in the above 
expression is that the observations are indicator variables (that is, outcomes of a Bernoulli 
random variable); the observation variance (that is, the UNC term) in the BS simplifies to 
𝑃𝑃�1 − 𝑃𝑃�. 

The components of the BS under the LBR decomposition (see Equation 63 in Appendix B) may 
be estimated via: 

𝐵𝐵𝑆𝑆 =
1
𝑛𝑛
Σ𝑖𝑖 = 0
1 𝑛𝑛𝑖𝑖�𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖�

2
−

1
𝑛𝑛
Σ𝑖𝑖 = 0
1 𝑛𝑛𝑖𝑖�𝑃𝑃𝑖𝑖 −  𝑃𝑃�

2
+

1
𝑛𝑛
Σ𝑘𝑘 = 1
𝑟𝑟 �𝑃𝑃𝑘𝑘 −  𝑃𝑃�

2
  (20) 

where the first, second and third terms represent T2B, –DIS and SHA, respectively, 𝑛𝑛 is the 
same as in Equation 19, 𝑛𝑛𝑖𝑖 is the number of pairs in the 𝑆𝑆 th bin of observations of flooding (𝑆𝑆 =
0 ) and no flooding (𝑆𝑆 = 1 ), 𝑃𝑃𝑖𝑖 is the mean of the forecast probabilities associated with the 
observations in the 𝑆𝑆 th bin, 𝑃𝑃𝑖𝑖 is the 𝑆𝑆 th observed event, 𝑃𝑃 is the grand mean of all forecast 
probabilities and 𝑃𝑃𝑘𝑘 is the 𝑆𝑆 th forecast probability. The above expression is identical to that of 
the MSE (see section 0). The only notational difference is that, for the BS, the index 𝑆𝑆 ranges 
only from 0 to 1 for the observed events of 0 and 1, respectively. 

In the above, the SHA term is given by the variance of the forecast, whereas in section 3.4, 
sharpness for probabilistic forecast is described in effect as (Daan, 1984): 

𝑆𝑆 =
1
𝑛𝑛
Σ𝑘𝑘 = 1
𝑟𝑟 𝑃𝑃𝑘𝑘(1 − 𝑃𝑃𝑘𝑘) (21) 

In the above, 𝑆𝑆 represents the average variance of 𝑛𝑛 Bernoulli random variables with the 
probabilities of occurrence of the event prescribed by 𝑃𝑃𝑘𝑘,  𝑆𝑆 = 1, . . ,𝑛𝑛. If all forecast probabilities 



 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 44 

are exclusively 0s and 1s, 𝑆𝑆 is zero (or perfectly sharp), and if all forecast probabilities are 0.5 
(that is, perfectly noncommittal), 𝑆𝑆 is at the maximum of 0.25 (or perfectly unsharp). If the 
probability forecasts are unconditionally unbiased, SHA relates linearly with 𝑆𝑆 (Potts, 2011. 
Hence, one may relate small and large 𝑆𝑆 (that is, sharp and unsharp probabilistic forecast) with 
large and small SHA in the LBR decomposition of the BS, respectively. 

The ranked probability score (RPS) is a multicategory extension of the binary form of the 
BS. The RPS measures the accuracy of categorical probability forecasts and is given by the 
MSE of categorical probability forecasts. For a two-category forecast, the RPS is the same as 
the BS. The RPS for the kth forecast–observed pair is given by: 

𝑅𝑅𝑃𝑃𝑆𝑆𝑘𝑘 = � �𝑃𝑃𝑘𝑘,𝑟𝑟 − 𝑃𝑃𝑘𝑘,𝑟𝑟�
2

𝐽𝐽

𝑟𝑟 = 1

 
(22) 

where J is the total number of categories, Fk,m is the forecast cumulative probability of the mth 
category and Ok,m is the unit step (that is, Heaviside) function representation of the verifying 
observation: Ok,m = 1 for m greater than or equal to the category in which the observation falls 
and Ok,m = 0 otherwise. Note that Fk,J and Ok,J are always equal to 1 since Fk,m is a cumulative 
probability and Ok,m is bounded by 1. Therefore, their square difference (Fk,J – Ok,J)² is equal to 
0. The RPS ranges from 0 (perfect) to J − 1 (when all forecasts are incorrect). The average or 
mean RPS is defined as: 

𝑅𝑅𝑃𝑃𝑆𝑆 =
1
𝑛𝑛
Σ𝑘𝑘 = 1
𝑟𝑟 𝑅𝑅𝑃𝑃𝑆𝑆𝑘𝑘 

(23) 

where n is the number of forecast–observed pairs. The RPS for a given forecast–observation 
pair may be visualized by plotting the cumulative distribution function (CDF) and the unit step 
function representation of the forecast and the observation, respectively, as shown in 
Figure 15. The area between the CDF and the unit step function represents the RPS.  

The RPS is useful for verifying categorical forecasts when one is interested more in the overall 
forecast accuracy across all categories than forecast accuracy for a specific category. Figure 15 
and Table 8 illustrate how to visualize and compute the RPS for three different streamflow 
forecast–observation pairs for probability forecast with three categories. The categories are 
defined as:  

• Low category if flow < Thrlow 

• Medium category if Thrlow ≤ flow < Thrhigh 

• High category if flow ≥ Thrhigh 
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Forecast 1 

 
Forecast 2 

 
Forecast 3 

 
Figure 15. Illustrative examples of the RPS for three different forecast–observation 

pairs for probability forecast with three categories 
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Table 8. Computation of the RPS for the three forecast–observation pairs in Figure 15 

Forecast k 

Observed 
flow in low 
category? 
Ok,1 = 1 
if yes, 0 

otherwise 

Observed 
flow in 

medium or 
lower 

category? 
Ok,2 = 1 
if yes, 0 

otherwise 

Observed 
flow in high 

or lower 
category? 
Ok,3 = 1 
if yes, 0 

otherwise 

Forecast 
probability 

for low 
category, 

Fk,1 

Forecast 
probability 
for medium 

or lower 
category, 

Fk,2 

Forecast 
probability 
for high or 

lower 
category, 

Fk,3 

RPSk∑ ⬚3
𝑟𝑟=1  

�𝑃𝑃𝑘𝑘,𝑟𝑟 − 𝑃𝑃𝑘𝑘,𝑟𝑟� 

1 0 1 1 0.25 0.75 1 (0 – 0.25)² + 
(1 – 0.75)² + 

(1 – 1)² = 
0.125 

2 1 1 1 0.25 0.50 1 0.812 

3 0 0 1 0.25 0.50 1 0.312 

       Σ = 1.249 

From Table 8, the average RPS is given by (0.125 + 0.812 + 0.312) / 3 = 1.249 / 3 = 0.42. 
Per Equation 2, one may define the Brier skill score (BSS) and the ranked probability skill 
score (RPSS) as shown below. 

The Brier skill score (BSS) measures the relative reduction of the BS by the subject forecast 
over the reference forecast: 

𝐵𝐵𝑆𝑆𝑆𝑆 = 1 −
𝐵𝐵𝑆𝑆
𝐵𝐵𝑆𝑆𝑟𝑟𝑟𝑟𝑓𝑓

 (24) 

where BSref is the BS of the reference forecast. The BSS ranges from –∞ to 1 (perfect score). A 
negative BSS value indicates that the subject forecast is worse than the reference forecast in 
terms of the BS, and a positive value indicates that it is better. For the example given in 
Table 5, let us assume that the BS for a climatological forecast is 0.33. Then, the BSS in 
reference to climatology is given by: 

𝐵𝐵𝑆𝑆𝑆𝑆 = 1 −
𝐵𝐵𝑆𝑆
𝐵𝐵𝑆𝑆𝑟𝑟𝑟𝑟𝑓𝑓

= 1 −
0.29
0.33

= 0.12 (25) 

The above indicates that the subject forecast is on average 12% better, in terms of the BS, 
than climatology. In practice, the calculation of the BS and BSS should be based on much 
larger forecast–observation datasets for both the subject and the reference forecasts. 

The BS is a strictly proper scoring rule and hence yields the lowest (that is, the best) score 
when the forecaster reports the true probability (Bernoulli) distribution. Such scoring rules 
hence encourage the forecaster to make careful assessments and to be honest (Gneiting and 
Raftery, 2007). However, when using the BSS for very rare events (and hence for very 
frequent events as well, because a probability of 0.001 of the event occurring is the same as a 
probability of 0.999 of the event not occurring), additional care should be exercised 
(Benedetti, 2010). The issue is particularly relevant for hydrological extremes as elaborated 
below in the context of flood frequency analysis for illustrative purposes only.  
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Let us consider categorical probabilistic forecasting. The expected (half) BS for the forecast 
probability of 𝑝𝑝 that an M-yr flood may occur in any given year is given by: 

𝐵𝐵𝑆𝑆 = (𝑝𝑝 − 1)2𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓 + (𝑝𝑝 − 0)2(1 − 𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓) = (𝑝𝑝 − 𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓)2 + 𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓(1 − 𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓) (26) 

where freq is the observed frequency of M-yr flood (that is, freq=1/M, and the overbar 
signifies the expected value. Assume that the probability forecast for the above event from the 
old forecast system is 0, (that is, it never forecasts a flood with a return period of M years or 
larger). With much improvement in the forecast system, the new system is now perfectly 
reliable without even resorting to calibration (that is, p = freq for all M ≥ 2). The BS skill score 
of the new probability forecast in reference to the old is then given by: 

𝐵𝐵𝑆𝑆𝑆𝑆 = 1 −
𝐵𝐵𝑆𝑆𝑟𝑟𝑟𝑟𝑛𝑛
𝐵𝐵𝑆𝑆𝑟𝑟𝑙𝑙𝑟𝑟

= 1 −
𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓(1 − 𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓)

𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓
= 𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓 =

1
𝑀𝑀

 
(27) 

According to the above skill scoring, one might conclude, against hydrological sense, that the 
new forecast has improved skill over the old by 50% for 2-yr floods, by 10% for 10-yr floods, 
by 1% for 100-yr floods and by 0.1% for 1 000-yr floods. Note that one can predict 2-yr floods 
with perfect reliability by tossing a fair coin every year, whereas it will take unprecedented 
efforts to predict 1 000-yr floods with reliability. The above counterintuitive result arises 
because the BS does not penalize forecasts of zero probability (an extremely strong 
statement) heavily enough when they are wrong (Jewson, 2004). 

The ranked probability skill score (RPSS) measures the relative reduction in the average 
RPS by the subject forecast over the reference forecast: 

𝑅𝑅𝑃𝑃𝑆𝑆𝑆𝑆 =  1 −
𝑅𝑅𝑃𝑃𝑆𝑆

𝑅𝑅𝑃𝑃𝑆𝑆
𝑟𝑟𝑟𝑟𝑓𝑓 

(28) 

where 𝑅𝑅𝑃𝑃𝑆𝑆
𝑟𝑟𝑟𝑟𝑓𝑓

 is the average RPS of the reference forecast. The RPS range from –∞ to 1 
(perfect score). A negative RPSS value indicates that the subject forecast is worse than the 
reference forecast in terms of the average RPS. For the example given in Table 6, let us 
assume that the average RPS for climatological forecasts is equal to 1. The RPSS in reference 
to climatology is then given by: 

𝑅𝑅𝑃𝑃𝑆𝑆𝑆𝑆 =  1 −
𝑅𝑅𝑃𝑃𝑆𝑆

𝑅𝑅𝑃𝑃𝑆𝑆
𝑟𝑟𝑟𝑟𝑓𝑓 = 1 −

0.42
1.0

= 0.58 
(29) 

The above indicates that the subject forecast is 58% better than climatology in terms of the 
average RPS. As with the BSS example above, the RPSS calculation in practice should be 
based on much larger forecast–observation datasets for both the subject and the reference 
forecasts. 

4.3 Metrics for continuous forecasts 

This section describes verification metrics for forecasts of continuous variables, such as 
streamflow. 

4.3.1 Scores for continuous single-valued forecasts 

A number of metrics are usually used to assess the quality of single-valued forecasts.  

The mean absolute error (MAE) is the average of the absolute differences between forecasts 
and observations: 
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𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑛𝑛
Σ𝑘𝑘 = 1
𝑟𝑟 |𝑓𝑓𝑘𝑘 − 𝑆𝑆𝑘𝑘| (30) 

where n is the number of forecast–observation pairs, and fk and ok are the kth forecast and 
observation, respectively. The perfect score for the MAE is 0. Because all errors are equally 
weighted, the MAE is not as sensitive to large forecast errors as the MSE (see below). The 
mean continuous ranked probability score (CRPS) (see below) of single-valued forecasts is 
equivalent to the MAE. 

The mean squared error (MSE) is the mean squared difference between forecast and 
observation:  

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑛𝑛
Σ𝑘𝑘 = 1
𝑟𝑟 (𝑓𝑓𝑘𝑘 − 𝑆𝑆𝑘𝑘)2 (31) 

The perfect score for the MSE is 0. The MSE is a measure of the overall accuracy of the 
forecast and comprises bias in mean, bias in standard deviation and the degree of association 
(that is, correlation) (see Equation 61 in Appendix B). The MSE is sensitive to large forecast 
errors. In hydrological applications, forecast errors tend to be larger for large events, which 
generally have larger impact than average events. Hence, this sensitivity is often desirable. As 
mentioned in section 3.4.4, the Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970), which is 
widely used in hydrology for model calibration, is a MSE skill score with the observed 
climatological mean as the reference forecast. 

The components of the MSE under the CR decomposition (see Equation 62 in 0) may be 
estimated via (Murphy, 1973): 

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑛𝑛
Σ𝑙𝑙 = 1
𝐿𝐿 𝑛𝑛𝑙𝑙(𝑆𝑆𝑙𝑙 − 𝑓𝑓𝑙𝑙)2 −

1
𝑛𝑛
Σ𝑙𝑙 = 1
𝐿𝐿 𝑛𝑛𝑙𝑙(𝑆𝑆𝑙𝑙 −  𝑆𝑆)2 +

1
𝑛𝑛
Σ𝑘𝑘 = 1
𝑟𝑟 (𝑆𝑆𝑘𝑘 −  𝑆𝑆)2  (32) 

where the first, second and third terms represent REL, –RES and UNC, respectively, n is the 
total number of forecast–observation pairs, L is the number of bins for the forecast events that 
the individual forecasts are subgrouped into, nl is the number of pairs in the lth bin, 𝑆𝑆𝑙𝑙 is the 
mean of the observations associated with the forecasts in the lth bin, fl is the lth forecast 
event, 𝑆𝑆 is the grand mean of all observations and ok is the kth observation.  

The components of the MSE under the LBR decomposition may be estimated via: 

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑛𝑛
Σ𝑖𝑖 = 1
𝐼𝐼 𝑛𝑛𝑖𝑖�𝑓𝑓𝑖𝑖 − 𝑆𝑆𝑖𝑖�

2
−

1
𝑛𝑛
Σ𝑖𝑖 = 1
𝐼𝐼 𝑛𝑛𝑖𝑖�𝑓𝑓𝑖𝑖 −  𝑓𝑓�

2
+

1
𝑛𝑛
Σ𝑘𝑘 = 1
𝑟𝑟 �𝑓𝑓𝑘𝑘 −  𝑓𝑓�

2
  (33) 

where the first, second and third terms represent T2B, –DIS and SHA, respectively, 𝑛𝑛 is the 
total number of forecast–observation pairs, I is the number of bins for the observed events 
that the individual observations are subgrouped into, ni is the number of pairs in the ith bin, 𝑓𝑓𝑖𝑖 
is the mean of the forecasts associated with the observations in the ith bin, oi is the ith 
observed event, 𝑓𝑓 is the grand mean of all forecasts and fk is the kth forecast. 

The root mean squared error (RMSE) is the square root of the MSE. 

The mean error (ME) is the average difference between forecasts and observations: 

𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
Σ𝑘𝑘 = 1
𝑟𝑟 (𝑓𝑓𝑘𝑘 − 𝑆𝑆𝑘𝑘) (34) 

The perfect score for the ME is 0. The ME is also known as the mean bias or first-order bias. A 
positive ME indicates a tendency to over-forecast, and a negative ME indicates a tendency to 
under-forecast. It is possible to have a small ME from large location- or time-specific forecast 
errors if the errors tend to cancel out with spatio-temporal averaging. Because mass balance is 
the most important governing principle in hydrology and water management, particularly at 
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the catchment scale, the ME or, equivalently, relative mean error (RME) (see below) or 
multiplicative bias (see below), is an extremely important measure in hydrological verification 
and should always be assessed for precipitation and streamflow over the range of spatio-
temporal scales of mass-balancing interest. 

The relative mean error (or relative bias) is the average difference between forecasts and 
observations relative to the observation mean: 

𝑅𝑅𝑀𝑀𝑀𝑀 =
𝑀𝑀𝑀𝑀
𝜇𝜇𝑟𝑟𝑜𝑜𝑓𝑓

 (35) 

where 

𝜇𝜇𝑟𝑟𝑜𝑜𝑓𝑓 =
1
𝑛𝑛
� 𝑆𝑆𝑘𝑘

𝑟𝑟

𝑘𝑘 = 1

 
(36) 

The perfect score for the RME is 0. A positive RME indicates a tendency to over-forecast, and a 
negative RME indicates a tendency to under-forecast. RME has no units and is often expressed 
as a percentage instead of a fraction. 

The multiplicative bias is a unitless measure of the overall (unconditional) bias defined as 
the ratio of the forecast mean to the observation mean: 

BIAS=
∑ 𝑓𝑓𝑘𝑘𝑟𝑟

k = 1
∑ 𝑆𝑆𝑘𝑘𝑟𝑟

k = 1
 (37) 

The perfect score for the multiplicative bias is 1. A value larger than 1 indicates a tendency to 
over-forecast, and a value smaller than 1 indicates a tendency to under-forecast. As with the 
ME, it is possible to score well on BIAS with significant location- or time-specific errors if they 
tend to cancel out when averaged in space or time. 

The Pearson correlation coefficient (CORR) is a measure of the linear association between 
the forecasts and the observations:  

𝑈𝑈𝑃𝑃𝑅𝑅𝑅𝑅 =
1
𝑛𝑛∑ ��𝑓𝑓𝑘𝑘 − 𝜇𝜇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�(𝑆𝑆𝑘𝑘 − 𝜇𝜇𝑟𝑟𝑜𝑜𝑓𝑓)�𝑟𝑟

𝑘𝑘 = 1

𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜎𝜎𝑟𝑟𝑜𝑜𝑓𝑓
 

(38) 

where  

 
𝜇𝜇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =

1
𝑛𝑛
� 𝑓𝑓𝑘𝑘

𝑟𝑟

𝑘𝑘 = 1

 
(39) 

 
𝜇𝜇𝑟𝑟𝑜𝑜𝑓𝑓 =

1
𝑛𝑛
� 𝑆𝑆𝑘𝑘

𝑟𝑟

𝑘𝑘 = 1

 
(40) 

 
𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �

1
𝑛𝑛 − 1

��𝑓𝑓𝑘𝑘 − 𝜇𝜇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
2

𝑟𝑟

𝑘𝑘 = 1

�

1
2

 
(41) 

 
𝜎𝜎𝑟𝑟𝑜𝑜𝑓𝑓 = �

1
𝑛𝑛 − 1

� (𝑆𝑆𝑘𝑘 − 𝜇𝜇𝑟𝑟𝑜𝑜𝑓𝑓)2
𝑟𝑟

𝑘𝑘 = 1

�

1
2

 
(42) 

The score for CORR ranges from –1 to 1, and the perfect score is 1. Visually, correlation 
measures how tight the scatter is in any direction between the forecasts and the verifying 
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observations. A value of 0 indicates no correlation between the forecast and the observation. 
Correlation of –1 indicates perfect negative correlation, in which case changing the sign of the 
forecasts will produce perfect positive correlation. Correlation is immune to additive or 
multiplicative biases in the forecast and is sensitive to extreme values.  

4.3.2 Scores for continuous probabilistic forecasts 

The verification metric used most frequently to describe the accuracy of probabilistic forecasts 
is the mean continuous ranked probability score (CRPS) (Matheson and Winkler, 1976; 
Hersbach, 2000).  

The continuous ranked probability score (CRPS) is a measure of the integrated squared 
difference between the cumulative distribution function of the forecast and the unit step 
function representation of the verifying observation. The CRPS for the kth forecast–observation 
pair is given by:  

𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆𝑘𝑘 = � [𝑃𝑃𝑘𝑘(𝑥𝑥) − 𝑃𝑃𝑘𝑘(𝑥𝑥)]2
∞

−∞
𝑜𝑜𝑥𝑥 (43) 

where Fk(x) is the forecast CDF and Ok(x) is the unit step, or Heaviside, function 
representation of the verifying observation. The perfect score for the CRPS is 0 (when the 
forecast is perfectly sharp and equals the observation). 

The CRPS for a given forecast–observed pair may be visualized by plotting the CDF of the 
forecast and the unit step (Heaviside) function representation of the observation as shown in 
Figure 16. The CRPS corresponds to the area between the two functions. In practice, the CDF 
is usually approximated by the empirical CDF (the “staircase” CDF) defined by the ensemble 
members. 

 
Figure 16. Illustrative example of the CRPS for a given pair of a probabilistic forecast 

and the verifying observed flow value qobs 

The mean CRPS is the average of all CRPSk, k = 1,..,n: 

𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆 =
1
𝑛𝑛
Σ𝑘𝑘 = 1
𝑟𝑟 𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆𝑘𝑘 

(44) 

The CRPS extends the RPS with an infinite number of categories (Hersbach, 2000) and is 
equivalent to the BS integrated over all possible thresholds within the range of the forecast 
(Jolliffe and Stephenson, 2012; Gneiting et al., 2005; Hersbach, 2000). Unlike the RPS, the 
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CRPS has the same unit as the predictand, which facilitates the assessment of the overall 
accuracy of probabilistic forecasts in physical space. One may hence consider the mean CRPS 
as a representative measure of accuracy for probabilistic forecasts, as the RMSE is for that of 
single-valued forecasts. The CRPS skill score (CRPSS) is defined according to Equation 2. 

The mean CRPS for single-valued forecasts (that is, perfectly sharp ensemble forecasts) 
reduces to the MAE, which allows possible comparison between probabilistic and single-valued 
forecasts. It is important to recognize, however, that such a comparison necessarily favours 
probabilistic forecasts, which reduce the risk of being wrong by spreading possible outcomes, 
over single-valued forecasts, which bet everything on a single outcome.  

Hersbach (2000) describes the CR decomposition of the mean CRPS: 

Mean CRPS = UNCCRPS + RELCRPS − RESCRPS = RELCRPS + CRPSpot (45) 

where CRPSpot is the potential mean CRPS representing the mean CRPS one could potentially 
obtain when the forecasts are perfectly reliable or well-calibrated (that is, RELCRPS = 0). The 
mean CRPS, as well as the reliability component and the potential mean CRPS are all 
negatively oriented, with a perfect score of 0. Unlike the reliability component of the BS, 
RELCRPS measures reliability similarly to the rank histogram (see section 0), that is, it assesses 
if the verifying observation is statistically just another ensemble member of the forecast 
distribution. The potential mean CRPS, CRPSpot, is sensitive to the average ensemble spread 
and the frequency and magnitude of outliers. For the best CRPSpot, the forecasting system 
needs a narrow ensemble spread on average without ensemble outliers that are too numerous 
or too high (Hersbach, 2000).  

4.3.3 Widely used diagrams for verification of probabilistic forecast 

This section describes the reliability diagram, the Talagrand diagram (or rank histogram) and 
the probability integral transform (PIT) histogram used for assessing reliability, and the 
relative operating characteristic (ROC) curve and discrimination diagram used for assessing 
discrimination.  

The reliability diagram plots the forecast probability of an event of interest, or simply 
forecast probability, on the x-axis and the fraction of the times when the event is observed 
given the forecast, or observed relative frequency, on the y-axis. If the forecast is reliable, the 
two should agree. For example, for all forecasts that predicted an event with a 25% chance, 
the event should have occurred 25% of the time whenever the forecast probability was 0.25. 
Each reliability diagram is constructed with respect to a specific binary event of interest (for 
example, the observed flow or some other variable exceeds some threshold). Hence, multiple 
reliability diagrams are generally necessary to assess the reliability of, for example, ensemble 
streamflow forecast across a range of magnitudes of streamflow.  

Because reliability is a conditional measure (see Equation 59 in Appendix B), it is necessary to 
divide the forecasts into bins of varying levels of probability. Hence, the reliability diagram 
requires a large dataset so that the sample size is adequate for each bin, particularly for 
events associated with high probability thresholds such as flooding. For the diagram’s 
construction, the forecast probability is divided into K bins between 0 and 1 so that the sample 
size is not too small for any bin. Typically, the reliability diagram includes the histogram of the 
sample size of forecast probability across all bins to assess sharpness. 

When the lines of no resolution and no skill (in reference to climatology) are added, the 
reliability diagram is called the attributes diagram (Hsu and Murphy, 1986), as shown in 
Figure 17. In the reliability diagram part of Figure 17, the forecast probabilities are binned into 
10 subranges of equal interval. For each subrange of forecast probability, the associated solid 
red circle indicates the observed relative frequency on the y-axis (that is, the fraction of the 
verifying observations of the event among all forecasts that predicted the event with the 
probability shown on the x-axis).  



 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 52 

In Figure 17, the horizontal no-resolution line corresponds to the climatological mean of the 
observation (in probability space). Recall that climatological forecasts are reliable but have no 
resolution. The no-skill line, for which climatology is the reference forecast, is given by the 
midpoints between the no-resolution line and the diagonal or perfect-reliability line (Hsu and 
Murphy, 1986). The shaded area in the attributes diagram is where the forecast contributes 
positively to the overall skill in reference to the climatological forecast. 

 
Figure 17. Illustrative example of the attributes diagram 

Perfectly reliable forecasts have the points representing forecast probability and observed 
relative frequency (the reliability curve) along the diagonal in the reliability diagram. 
Significant departures from the diagonal indicate type I conditional bias. Figure 18 provides 
several illustrative examples of the reliability curve. A reliability curve that lies above the 
diagonal is indicative of under-forecasting (in probability) – that is, the observed relative 
frequency of the event is greater than the forecast probability. A reliability curve that lies 
below the diagonal is indicative of over-forecasting.  

Forecasts are under-confident (that is, the ensemble members are over-spread) if the event 
occurs more frequently than the forecast probability. Forecasts are over-confident (that is, the 
ensemble members are under-spread) if the event occurs less frequently than the forecast 
probability. A horizontal reliability curve indicates no resolution, meaning that events occur 
with the same frequency regardless of the forecast probability. A negatively sloped reliability 
curve indicates negative reliability (that is, negative type I conditional bias), meaning that 
events occur more frequently when the forecast probability is smaller and less frequently when 
it is larger. 

If the sample size is small, not all bins for forecast probability may be represented, leading to 
interruptions in the reliability curve and hence an erratic pattern due to the sampling 
uncertainty. In this case, one may reduce the number of bins so that the sample size increases 
for the data-deficient bin(s). If the above does not produce stable reliability diagrams, other 
reliability measures may be used, such as the reliability component of the BS and that of the 
mean CRPS (see section 4.3.2). It is important to recognize, however, that the above reliability 
components are weighted averages over all forecast probabilities and hence are not as strong 
a test for reliability as the reliability diagram for specific events. In addition, unlike the 
reliability component of the BS, the reliability component of the mean CRPS assesses the 
likeness of the probability distribution of the ensemble members to that of the verifying 
observation, similarly to the rank histogram (see below). 
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Figure 18. Illustrative examples of the reliability diagram with interpretation for a 

defined event of interest 

Reliability of ensemble forecasts may be assessed with the Talagrand diagram, also known as 
the rank histogram; however, this is weak test of reliability. Ensemble forecasting aims at each 
ensemble member statistically behaving like the observation. The Talagrand diagram assesses 
if the ensemble spread is consistent with the variability of the observation. A uniform 
Talagrand diagram is hence a necessary, but not sufficient, condition for reliability (in the 
sense of lack of type I conditional bias) and is often used as an initial check on reliability 
(Hamill 2001). 

The Talagrand diagram (or rank histogram) measures how well the ensemble spread 
represents the variability of the observations by plotting the fraction of the observations that 
fall between any two ranked ensemble members. The plot verifies if the observation is equally 
likely to occur in each of the k + 1 bins of an ensemble forecast with k members. The 
Talagrand diagram is created via the following steps: order the k members in an ensemble 
forecast from the smallest to the largest, define the k + 1 bins between any two ranked 
ensemble members and identify the bin that the observation falls into, and repeat the above 
for all forecast–observation pairs while counting how many observations fall into each bin. 
Since the bins are defined for each ensemble forecast based on ranking the members, they 
vary in size. Also, there is a probability of 2 / k that the observation will fall outside of the 
ensemble spread. For a uniform rank histogram, the number of observations in each bin is 
N / (k + 1), where N is the total number of forecast–observation pairs. 

Figure 19 presents illustrative examples of the rank histogram and what they may indicate. If 
the ensemble members perfectly represent the variability of the observation, an observation is 
equally likely to fall into any bin, resulting in a flat Talagrand diagram showing rank uniformity. 
An asymmetric histogram usually indicates biases in the ensemble mean or possibly in higher-
order moments. An L-shaped Talagrand diagram, which reflects greater observed frequencies 
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towards the lower categories, indicates that observations are too often smaller than the 
ensemble members, usually owing to over-forecasting. If the Talagrand diagram shows greater 
observed frequencies towards the higher categories, observations are too often larger than the 
ensemble members, usually owing to under-forecasting. A symmetric, dome-shaped Talagrand 
diagram indicates that not enough observations are falling at the extremes, as most 
observations fall near the centre of the ensemble spread. In such a case, the ensemble spread 
may be too large, owing to over-dispersion. A U-shaped Talagrand diagram usually indicates 
that too many observations fall at the extremes of the ensemble spread, usually owing to 
under-dispersion. 

Talagrand (1997) proposed a metric based on the deviation from a flat histogram to 
characterize the forecast reliability in the context of rank histogram and to compare different 
sets of ensemble forecasts. Hamill (2001) reports that a U-shaped diagram, commonly 
interpreted as indicating a lack of ensemble spread, may also be a sign of conditional bias. 
Also, when using imperfect observations, the observational error could impact the shape of the 
rank histogram. Typically, the larger the observational error is, the more U-shaped the rank 
histogram will appear, even for reliable ensemble forecasts. Therefore, lack of rank uniformity 
should be further investigated with other verification measures and diagrams to ascertain the 
nature of the forecast errors and avoid misinterpretation. 

 
Figure 19. Illustrative examples of the Talagrand diagram and their interpretation 

The probability integral transform (PIT) histogram is an analogue of the rank histogram 
and has similar interpretations. Reliable probabilistic forecasts yield PIT histograms that are 
flat or uniform, whereas U- and dome-shaped PIT histograms are often associated with under- 
and over-dispersed forecasts, respectively. The PIT diagram is the cumulative distribution of 
the PIT values (Gneiting et al., 2007; Wilks, 2011). For reliable forecasts, the PIT diagram falls 
on the 45° line. Similarly to the interpretation of the rank histogram, deviations from the 
diagonal line in the PIT diagram may help diagnose forecast errors. Case 6 in Chapter 7 uses 
the PIT histogram to assess reliability of ensemble streamflow forecast for ephemeral streams. 

For discrimination, the most widely used diagram is the ROC curve. 

The relative operating characteristic (ROC) curve is a signal detection curve for binary 
forecasts and plots POD (or hit rate) on the y-axis versus POFD on the x-axis (see section 4.2 
for definitions of POD and POFD). Developed originally in electrical (radar) engineering (Green 
and Swets, 1966), the ROC curve measures discrimination by conditioning on the observations 
(that is, on the observed yes-events for POD and the observed no-events for POFD).  

For perfect discrimination, the curve travels from (0,0) to (0,1) at the top left of the diagram 
(POFD = 0 and POD = 1), then to (1,1) at the top right of the diagram. The diagonal line 
indicates no skill (POD = POFD) of a random forecast (that is, a coin flip). The forecast has 
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discriminatory skill if its ROC curve is above the diagonal line. A ROC curve below the diagonal 
indicates negative discriminatory skill (the observed outcomes of the forecast no- and yes-
events are likely to be yes- and no-events, respectively). For single-valued forecasts (that is, 
perfectly sharp probabilistic forecasts), the ROC curve forms a triangle connecting (0,0), 
(POFD, POD) and (1,1). 

Figure 20 illustrates the ROC curve and the area under the curve (AUC) for prediction of 
flooding or no flooding using single-valued forecasts. In Figure 20., the blue solid lines 
represent the ROC curve, the ROC score is given by the AUC, the diagonal (POD = POFD and 
AUC = 0.5) represents the line of no discriminatory skill, and the ROC curve below the 
diagonal represents negative discriminatory skill. The closer POD and POFD are to 1 and 0, 
respectively, the larger the discriminatory skill is. The shape of the ROC curve is triangular in 
this illustrative example because single-valued forecasts are equivalent to single-member 
ensemble forecasts and hence perfectly sharp. Therefore, the forecast probability of 
exceedance with respect to the threshold of interest is either 0 or 1. 

 
Figure 20. ROC curve (in blue) for single-valued, or perfectly sharp, binary forecasts 

with POD of 0.75 and POFD of 0.25 

For probabilistic forecasts, the ROC curve is obtained by plotting POD versus POFD using a set 
of increasing probability thresholds to define the forecast yes- and no-events. For each of the 
N increasing probability thresholds, a forecast is counted as a yes-event if the forecast 
probability is above the probability threshold, and as a no-event otherwise. For each 
probability threshold, the POD and POFD scores are computed from the 2 × 2 contingency 
table (see section 4.2). The ROC curve for probabilistic forecasts then connects (0,0), (POFDj, 
PODj) for j = 1 to N, and (1,1). 

Figure 21 illustrates the ROC curve and the AUC for discrimination of flooding versus no 
flooding for probabilistic forecasts. In this example, the decision probability thresholds used 
are 0.2, 0.4, 0.6 and 0.8. Figure 21 shows that the probability threshold of 0.4 yielded PODj of 
0.75 and POFDj of 0.3 for the probability forecasts. It is readily seen in Figure 21 how one 
might choose a personalized or application-specific probability threshold to reflect one’s 
aversion or tolerance for POFD. 
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Figure 21. ROC curve (in blue) for probabilistic binary forecasts for which PODj 
and POFDj are evaluated for a set of j increasing decision probability thresholds 

of 0.2, 0.4, 0.6 and 0.8 

Nominally, ROC curves for a single-valued forecast and a probabilistic forecast based on the 
same event definition may be intercompared if plotted together. Such a comparison, however, 
necessarily favours a probabilistic forecast which adds curvature to the ROC curve by hedging 
the bets (spreading the possible outcomes around). As seen in Figure 20, the ROC “curve” for 
single-valued forecasts can only be triangular by betting all on a single outcome and hence has 
a smaller AUC. A more useful comparison, particularly if the underlying hydrological models 
used are the same, is to check the location of the (POFD, POD) for the single-valued forecast 
relative to the AUC for the probabilistic forecast. If the former lies outside of the latter (that is, 
farther away from the diagonal than the farthest point in the ROC curve from the diagonal), it 
is an indication that one may be able to improve the quality of probabilistic forecast by 
improving uncertainty modelling. 

The ROC score is a summary score for the ROC curve and is defined as:  

𝑅𝑅𝑃𝑃𝑈𝑈 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 × (𝑆𝑆𝑈𝑈𝑈𝑈 − 0.5) (46) 

The ROC score is 0 (that is, no discriminatory skill) if the ROC curve corresponds to the 
diagonal (POD = POFD). The perfect score is 1 (POD = 1 and POFD = 0). 

Discrimination may also be visually assessed with the discrimination diagram. 

The discrimination diagram plots, for each of all mutually exclusive and collectively 
exhaustive verifying events, such as flooding and no flooding, the conditional probability that 
the event is forecast given that the event is observed (on the y-axis) as a function of the 
(unconditional) probability of the event being forecast (on the x-axis). For binary events, this 
diagram plots the conditional probability that the yes-event was forecast given that the event 
occurred, and the conditional probability that the no-event was forecast given that the event 
did not occur as functions of the probability of the yes-event being forecast. If the forecasts 
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have good discriminatory skill, the resulting two distributions, or so-called likelihood functions, 
would be well separated from each other, exhibiting two distinct peaks with little overlap. 

As may be inferred from the above, the discrimination diagram is similar to the ROC curve for 
binary events. The main difference is that, whereas the latter plots POD versus POFD for a 
range of different exceedance probabilities of the yes-event being forecast, the former plots 
POD and 1 – POFD for varying levels of the probability of the yes-event being forecast. 
Figure 22 illustrates the discrimination diagram for probabilistic forecasts for binary events 
such as flooding and no flooding. The discrimination diagram consists of two plots: the 
fractions of the yes-events forecast among all yes-events observed (in red) and the fractions 
of the no-event forecasts among all no-events observed (in blue).  

All fractions mentioned above are calculated for and connected across the 5 different levels of 
probability of yes-event forecast shown on the x-axis. The probability levels are chosen so that 
the sample size is adequate for each bin. The resulting two likelihood functions exhibit some 
separation, showing the forecasts’ ability to differentiate yes- and no-events. The lower plots 
show discrimination diagrams for forecasts with good discrimination (left) and forecasts with 
poor discrimination (right). To characterize the separation between the two likelihood 
functions, one may calculate the discrimination distance defined as the absolute difference in 
mean between the two likelihood functions. 

 

 
Figure 22. Illustrative examples of discrimination diagram for a binary probabilistic 

forecast 
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4.4 Additional considerations 

As forecast accuracy depends on various attributes, several verification metrics and diagrams 
are typically necessary to adequately assess the quality, strengths and weaknesses of the 
forecast. The choice of the most suitable metrics for the verification task at hand should be 
based on a step-by-step approach, starting with the selection of at least one metric for each 
forecast attribute of interest. The choice of verification metrics depends not only on the 
application but also on the verification objectives, as illustrated in the case studies presented 
in Chapter 7 and in the examples from the verification literature reviewed by Anctil and 
Ramos (2019). 

In hydrological model calibration, one may employ a set of performance evaluation criteria to 
assess the quality of model simulation. For example, Moriasi et al. (2015) reports ranges of 
values for performance criteria for a small number of metrics selected at the catchment and 
field scales and rates the performance from “very good” to “not satisfactory”. For verification 
of streamflow forecasts, however, such an approach is not likely to yield verification 
information that is very useful for user decision-making for multiple reasons, as explained 
below. Whereas the accuracy of model-simulated streamflow reflects only the structural and 
parametric uncertainties in the hydrological model, the accuracy of streamflow forecasts 
depends additionally on the accuracy of the input forecast, the memory of the hydrological 
system (Alizadeh et al., 2020) and the collective predictive skill of the forecast system, which 
reflects not only model calibration but also DA, postprocessing and possibly other factors (see 
section 2.4). Because the above predictability and predictive skill depend not only on the lead 
time but also on the temporal scale of aggregation and the magnitude of streamflow, assessing 
the predictive skill of a forecast with simulation-centric performance evaluation criteria is likely 
to be too limiting. On the other hand, an operational agency may select a small number of lead 
time- and scale-specific verification metrics to measure and track the improvement over time 
in the quality of river forecasts.  

As verification analysis is often used to compare forecast quality for different forecast 
locations, it is important to select metrics and thresholds such that the verification scores may 
be compared across different locations. To intercompare or aggregate verification results at 
different locations, normalized verification metrics such as skill scores may be necessary. Skill 
scores measure percent improvement (or deterioration) in the metrics of choice by the subject 
forecast over the reference forecast of choice. They also help determine if the verification 
results are good because the forecast system has good predictive skill or because the 
predictand is very predictable.  

Depending on the application and the choice of the reference forecast, skill scores may not, by 
themselves, inform the user of the practical significance of the improvement for decision-
making. For example, a 10% increase in MSESS or CRPSS of the subject forecast in reference 
to climatology for the dry season is likely to carry far less significance for flood forecasting 
than that for the wet season. For ensemble water quality forecasting (Kim et al., 2014), on the 
other hand, such an increase in skill score in the dry season is likely to be significant. Recall 
also in section 4.2.2 the counterintuitive illustrative example involving the BSS. 

It is good practice to examine the verification metrics themselves in addition to the skill scores 
to gauge hydrological significance and potential impact to the user’s decisions. Many users of 
forecast information do not have the resources or expertise to translate verification information 
through their decision support systems or processes to assess application-specific impact. For 
this reason, the RMSE and mean CRPS are particularly useful (and hence popular) because 
they are expressed in the same unit as the predictand itself. For example, a dam operator will 
be able to relate the reductions in the RMSE or mean CRPS in units of discharge and volume 
with the reservoir’s release and storage capacities far more easily than any skill score. 

For those verification metrics that require binary representations of the forecast and the 
verifying observation such as the reliability diagram and the ROC, the event categorization 
(the prime example being flooding and no flooding) should be made commonly across all 



59 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 

metrics to allow cross-assessment of different attributes in the same reference frame. The 
event categorization may be for flooding and no flooding, surface runoff and no surface runoff, 
multiday inflow volume exceeding and not exceeding some threshold, and so on. Regardless of 
the choice, the categorized events must be mutually exclusive and collectively exhaustive. To 
facilitate intercomparison among different locations, the threshold used in the categorization 
may be defined as percentiles in the observed distribution (for example, 10th percentile for low 
flow and all other flows, or 90th percentile for significant flow and all other flows). When using 
common event categorization to assess forecast quality across multiple basins, the verification 
results may be more difficult to interpret due to the likely variations in sample size, particularly 
for large-to-extreme events. Preferably, one should assess sampling uncertainty by estimating 
confidence intervals analytically or numerically via bootstrapping. At minimum, one should 
communicate sampling uncertainty by reporting the number of forecast–observation pairs as a 
proxy (in the entire dataset as well as for the subsamples when applying a specific condition or 
conditions). Verification plots with confidence intervals are particularly useful to users who can 
integrate the information for improved decisions. 

The adequacy of the sample size may be assessed by calculating confidence intervals for the 
verification metrics of choice (see Figure 47 for an example). If the confidence interval is 
acceptably narrow based on significance testing or visual examination of the width of the 
interval relative to that of the verification metric itself, one may consider the sample size 
adequate. In practice, such assessment is often not very straightforward, as it may require 
examination of many confidence interval-assessed verification metrics following stratification 
or conditioning of the data with respect to duration, headwaters versus downstream, season, 
magnitude of flow and possibly other hydroclimatological attributes. Note that, depending on 
the extent of the stratification or conditioning, the sample size is likely to be greatly reduced. 
The above examination is also necessary to ascertain the magnitude of the largest events that 
may be verified with statistical significance given the period of record. To increase sample size, 
one may forego stratification or conditioning at the expense of losing specificity with respect to 
certain hydroclimatological attributes or lowering the magnitude of the largest events being 
verified. Often, assessment of such trade-offs is not clear cut, and judgment will have to be 
exercised based on experience and practicality. If location-specific verification is not possible, 
one will have to trade location specificity for increased sample size via aggregate verification 
(see Case 2 in Chapter 7). The guidance on sample size obtained from the above process may 
be transferable to other locations of similar hydroclimatology and period of record. In such 
cases, repeated assessment of confidence intervals based on, for example, bootstrapping (see 
section 2.4), which is computationally expensive, may be avoided. 

Often, verification tasks involve comparing forecasts from two competing forecast systems or 
processes using identical verifying observations. When evaluating confidence intervals for the 
differences in verification results in such head-to-head comparative verification, care should be 
taken to account for the likely positive correlation between the competing forecasts. Estimating 
confidence intervals independently of each other when the two forecasts are significantly 
correlated (that is, statistically dependent) is likely to overestimate the sampling uncertainty 
associated with the difference in the metric of interest calculated for the two forecasts. For 
example, when comparatively verifying forecast A with forecast B versus common verifying 
observations using mean CRPS, the sampling uncertainty of interest may be for 𝛥𝛥𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆 =
𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆𝐴𝐴 − 𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆𝐵𝐵 rather than for 𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆𝐴𝐴 and 𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆𝐵𝐵 individually. If the lower uncertainty bound for 
𝛥𝛥𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆 is positive, one may conclude that the reduction in mean CRPS by forecast B over 
forecast A is statistically significant. If bootstrapping is used to assess the sampling uncertainty 
of 𝛥𝛥𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆, identical realizations of random sampling with replacement should be used between 
the two forecasts when calculating 𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆𝐴𝐴 and 𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆𝐵𝐵. 

In operational hydrological forecasting, accurate prediction of large-to-extreme events is often 
the most important service. In the descriptions thus far, it is implicitly assumed that, once the 
forecast–observation pairs are stratified as necessary with respect to season (for example, cool 
versus warm or dry versus wet) and possibly other hydroclimatological or physiographic 
attributes, one may obtain all necessary verification information by carrying out verification 
using all available forecast–observation pairs. Recall in Chapter 3 that the distributions-
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oriented approach assumes the forecast–observation pairs to be jointly IID. In reality, the 
forecast–observation pairs within the periods of significant hydrograph response are likely of 
different statistical character than those in the rest of the periods. Similarly, the pairs from 
different hydrological or hydraulic regimes (for example, surface runoff and interflow versus 
baseflow, in-channel versus out-of-channel flow) may not share the same joint probability 
distribution. To assess such flow regime-dependent forecast quality, it is often desirable to 
perform verification conditionally on certain events in addition to “unconditional” verification. 
Conditional verification amounts to decomposing the verification metrics of choice into regime-
specific contributions to help address the above questions, as illustrated below using the MSE 
and low versus high flow as an example: 

𝑀𝑀𝑆𝑆𝑀𝑀 = 𝑀𝑀𝑆𝑆𝑀𝑀𝑙𝑙𝑟𝑟𝑛𝑛 𝑓𝑓𝑙𝑙𝑟𝑟𝑛𝑛 ∙ 𝑓𝑓𝑆𝑆𝑙𝑙𝑟𝑟𝑛𝑛 𝑓𝑓𝑙𝑙𝑟𝑟𝑛𝑛 + 𝑀𝑀𝑆𝑆𝑀𝑀ℎ𝑖𝑖𝑖𝑖ℎ 𝑓𝑓𝑙𝑙𝑟𝑟𝑛𝑛 ∙ �1 − 𝑓𝑓𝑆𝑆𝑙𝑙𝑟𝑟𝑛𝑛 𝑓𝑓𝑙𝑙𝑟𝑟𝑛𝑛� (47) 

where 𝑀𝑀𝑆𝑆𝑀𝑀𝑙𝑙𝑟𝑟𝑛𝑛 𝑓𝑓𝑙𝑙𝑟𝑟𝑛𝑛 and 𝑀𝑀𝑆𝑆𝑀𝑀ℎ𝑖𝑖𝑖𝑖ℎ 𝑓𝑓𝑙𝑙𝑟𝑟𝑛𝑛 are the MSEs for the low- and high-flow periods, respectively, 
and 𝑓𝑓𝑆𝑆𝑙𝑙𝑟𝑟𝑛𝑛 𝑓𝑓𝑙𝑙𝑟𝑟𝑛𝑛 and �1 − 𝑓𝑓𝑆𝑆𝑙𝑙𝑟𝑟𝑛𝑛 𝑓𝑓𝑙𝑙𝑟𝑟𝑛𝑛� are the fractions of the low- and high-flow periods, respectively. 
In the above, the conditioning may be based on any events of choice as long as they are 
mutually exclusive and collectively exhaustive so that Equation 47 is a proper identity in the 
mean sense.  

The additional verification information from such analysis often provides additional insight into 
diagnosing the performance of forecast systems and processes, and aids regime-specific 
characterization of forecast quality. Cases 1 through 4 in Chapter 7 provide examples of using 
conditional verification for such purposes. It is important to note that, in general, conditional 
verification results should be accompanied by the “parent” unconditional verification results to 
avoid misinterpretation or misuse. For example, using only the conditional verification 
information amounts to using improper scoring (Bellier et al., 2017; Lerch et al., 2017) and 
will inevitably lead to poor decisions most of the time given that low flows occur far more 
frequently than high flows. 

Currently, there is no settled way to address the independence assumption in streamflow 
verification. Baseflow tends to be highly correlated in time, whereas “event” flow is much less 
so, depending on the sampling interval. In addition, the collective baseflow period is generally 
significantly larger than the collective event flow period (that is, frlow flow > frhigh flow in Equation 47). 
Hence, using all available forecast–observation pairs amounts to oversampling low-flow 
conditions. It is technically possible to assess regime-dependent temporal correlation and 
subsample the pairs accordingly. Such statistical modelling, however, is subject to errors of its 
own due to possible sampling uncertainty, skewness, heteroscedasticity and nonstationarity. In 
addition, such subsampling will render metrics such as the ME – which is critical to assessing 
mass balance – difficult to interpret. To reduce temporal correlation, one may aggregate the 
pairs over sufficiently large subperiods and verify the time-aggregated pairs. Such an 
approach, however, does not provide verification information for instantaneous flow, which is 
the most important piece of data for flood forecasting. The combined use of unconditional and 
conditional verification represents a practical compromise to produce verification information 
necessary for user decision-making without introducing additional layers of complexity. As 
hydrological verification develops further, better approaches are likely to emerge.  

When verifying skewed and heteroscedastic variables such as streamflow (as well as 
precipitation), one may find that both type I and type II conditional biases may be acceptably 
small when all ranges of flow are considered, but that type II conditional bias is unacceptably 
large for high flows. Depending on the service goals of the forecasting agency, such additional 
verification information may potentially impact decisions about the choices of the input 
forecasts, hydrological models, forecast system components and forecast processes. For 
example, if the agency’s most important service is flood forecasting, it may be willing to trade, 
up to a point, overall accuracy and reliability (that is, type I error) for significantly reduced 
type II error to improve predictive skill for large-to-extreme events. In the context of 
categorical forecasting, the above trade-off amounts to accepting more frequent false alarms 
for smaller events in favour of avoiding “big” misses. 
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To support such decision-making, proper verification is critically important, as one must be 
able to identify and assess the competing attributes and their trade-offs objectively and 
coherently, often in a zero-sum game. Accuracy measures such as the weighted version of the 
CRPS (Gneiting and Ranjan, 2011) attempt to incorporate magnitude-dependent importance 
into proper metrics by placing larger weights over a specific region of the predictand. It is 
unclear, however, whether such approaches are any more practical than providing the user 
with additional “predictand region-specific” verification information so that one may make 
one’s own decisions. Practicing hydrologists and water resources engineers are well prepared 
to use such information because they routinely communicate in terms of return periods or 
frequencies of occurrence (as in flood frequency analysis) and hence clearly understand what 
conditioning on the verifying observation exceeding some percentile represents versus no such 
conditioning. 

An important group of users of hydrological forecasts and hence verification information are 
the operators and managers of infrastructure for control, conveyance and mitigation of floods, 
including urban drainage systems, and those of other critical infrastructure. The design storms 
and discharges for such systems are typically expressed in terms of the return period (Chow et 
al., 1988). Hence, these users are particularly interested in forecast skill for precipitation or 
discharge events exceeding certain thresholds. Societal needs for such additional verification 
information are likely to grow – particularly for flooding in urban and suburban areas as 
urbanization continues globally in addition to climate change (Ritchie et al., 2024). Such 
changes mean increasing nonstationarity in the hydrometeorological and hydrological 
processes (Milly et al., 2008), which makes calibration for reliability increasingly challenging 
while increasing the chances of “surprises” (that is, misses). Hydrological verification must be 
able to support decision-making in such an environment. The above picture underscores the 
importance of increasing the sample size so that one is able to make stronger inferences about 
the right tail of the distribution. To help reduce such observational information gaps, it may be 
necessary to consider non-traditional forms of observation as well in hydrological verification 
(Noh et al., 2019). 

4.5 Key points 

• Multiple metrics are available to assess each of the widely measured attributes for 
different types of forecasts. The MSE (or RMSE), the 2 × 2 contingency table, the BS and 
the mean CRPS are particularly important, as they collectively contain almost all other 
metrics or their building blocks. It is hence important to understand what each of the 
above four metrics comprise, so that one may utilize the entire suite of metrics, scores 
and diagrams effectively. 

• This publication describes most of the widely used verification metrics, scores and 
diagrams. Some of the metrics derived from the 2 × 2 contingency table are better 
suited for verification of flash flood forecasts than streamflow forecasts. All others 
described in this chapter apply to the verification of streamflow forecasts. Most of them 
are available in verification software tools such as the EVS. 

• Several diagrams and histograms are used to assess the attributes associated with the 
BS decomposition for probabilistic forecasts. The most widely used include the reliability 
diagram (a strong test of reliability), the rank histogram (a weak test of reliability), the 
ROC curve for discrimination and the forecast frequency histogram for sharpness. 
Depending on the application, the PIT diagram (see Case 6 in Chapter 7) and discrimination 
diagram may be preferred to the rank histogram and the ROC curve, respectively. 

• Streamflow and precipitation typically exhibit skewness (asymmetry in distribution) and 
heteroscedasticity (nonuniformity in variability), which are often not explicitly assessed in 
verification. For streamflow, skewness and heteroscedasticity reflect predictability and 
flow regime-dependent variability, respectively, and hence provide very useful guidance 
on stratification, pooling, or conditioning of the forecast–observation pairs.  



 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 62 

• Sampling uncertainty is a recurring challenge in hydrological verification, particularly for 
conditional verification of probabilistic forecasts for large-to-extreme events. It is a good 
practice to assess sampling uncertainty via bootstrapping early in the verification task for 
sample size-challenged cases. One may then assess how sampling uncertainty may be 
reduced by relaxing the conditioning or trading space for time via data pooling or 
regionalization. 

• Conditional verification results, if produced, should be communicated together with the 
“parent” unconditional verification results to avoid misinterpretation or misuse. For 
example, using verification information for high flows as being representative of all flows 
will inevitably lead to poor decisions most of the time. 
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CHAPTER 5. PREPARATORY STEPS AND LOGISTICAL 
CONSIDERATIONS 

The ultimate goal of verification is to support and improve the decision-making of users of the 
forecast products and services. Whether it is implicit or explicit, there is often a process in 
place in which the verification informs a decision which in turn triggers a response. This 
chapter concerns the production of verification information (the left-most process in 
Figure 23). 

 
Figure 23. Verification, decision, response process 

In practice, several steps are generally necessary to produce useful verification results. Each 
step involves multiple choices and decisions which, if not well thought out in advance, may 
lead to avoidable trials and errors. This chapter provides the reader with practical points to 
consider for purposeful and time-effective verification. 

5.1 Defining verification objectives 

Verification tasks should be planned and designed such that objectives are clear and well 
defined. Several example tasks of widely varying scope and specificity are presented below 
based on their main objective. 

Example I: Provide the users of forecast information with basic forecast accuracy information. 
From the perspective of an operational forecasting agency, arguably the most important 
objective for verification is to provide users of forecast information with an up-to-date 
summary of the past performance of their forecast products. Whereas it is generally 
impractical to tailor the verification information to specific user groups, it should be reasonably 
location-specific and reflective of seasonality and other broadly important hydroclimatological 
and physiographic attributes. Such information is likely to aid the users’ decision-making 
tangibly and hence increase the utility and value of the agency’s forecast products. For this 
objective, the verification task should broadly address the basic user question of “How good is 
your forecast?”  

Example II: Provide human forecasters and users with organization-specific risk profiles with 
additional forecast accuracy information. For potential large-impact events, managers of 
emergency response, public safety, critical infrastructure (including that for flood control and 
transportation), and human, material and natural resources seek additional information from 
human forecasters of operational forecasting agencies about the forecast and forecast quality 
beyond what is available publicly. For this objective, verification information should include 
comparative performance among different forecasts from different sources or based on 
different data sources, models and forecast systems. Such information should preferably be 
stratified for the environmental conditions that are being forecast (for example, past 
performance for flooding due to heavy rainfall on already wet soil from tropical storms and 
hurricanes). For the above, the verification task should address such user questions as “What 
is the basis for your latest forecast?” and “How confident are you of your forecast?” For the 
forecasters, the verification task should help them explain to the users how they arrived at 
their forecasts and what the significant sources of uncertainty may be. 
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Example III: Assessment of new techniques. A researcher has developed a new technique for 
correcting biases in streamflow forecasts. Her verification objective is to assess to what degree 
the bias-corrected forecasts were improved over the raw forecasts for possible operational 
implementation. She may decide on a set of metrics to measure accuracy. For both forecasts, 
she will design and carry out a hindcast (that is, reforecast) experiment for a period of multiple 
years. To determine if the bias-corrected forecast is improved over the raw forecast, she will 
compute skill scores of the bias-corrected forecast in reference to the raw (uncorrected) 
forecast. If the skill scores are significantly positive, she may conclude that the bias-corrected 
forecasts are better than the raw forecasts. 

Example IV: Annual reporting. A government agency is tasked with routinely forecasting water 
levels for a stretch of a river used extensively for navigation. The error in the agency’s river 
stage forecast may not exceed 10 and 20 cm at lead times of 12 and 24 hours, respectively. 
These performance indicators are assessed every calendar year. Each year, the agency 
prepares a report that shows the accuracy of the operational forecasts produced in the 
previous calendar year. The report also includes the same metrics for the preceding 10 years 
so that one may easily ascertain any long-term trends in forecast quality. 

Example V: Ensuring that an ensemble forecast is probabilistically unbiased. A forecasting 
agency routinely produces ensemble streamflow forecasts. One of the users of the forecast 
would like to implement a formal decision-making process based on the probability of 
streamflow exceeding some threshold. The user wonders if he can justifiably assume that the 
probabilities derived from the ensembles are unbiased. He confirms that he is fine with all 
other forecast attributes of the ensemble forecast, and that he understands that the 
climatological ensemble forecast is perfectly reliable. The agency tasks a staff member to 
assess the reliability of the forecast. She collects the forecasts and the verifying observations 
from the operational archive. Using a verification tool, she produces rank histograms and 
reliability diagrams (see section 4.3.2). From these, she is able to verify if the forecast 
probabilities agree with observed relative frequencies and hence the ensemble forecast may be 
deemed probabilistically unbiased. 

Example VI: Verification of run-time modifications by human forecasters. A forecast centre 
manually modifies forecast model inputs, parameters and states in an effort to produce the 
best possible forecast. The modifications are based on the forecasters’ expert judgment as 
informed by routinely comparing model outputs with real-time observations. Every Monday, 
the previous week’s forecasts are discussed in a plenary session. The discussion focuses on the 
degree to which forecasters’ modifications have changed the quality of the forecasts.  

These examples show that verification tasks may vary greatly in scope and depth, and that the 
verification process may look very different depending on the task at hand. The choice of the 
verification metrics and scores and the reference forecasts is likely to vary depending on the 
objective and the nature of the predictability of the predictand and the predictive skill in the 
forecast systems and processes. In addition, data sources may vary and, depending on the 
period of record available, hindcasting or reforecasting may be necessary. 

5.2 Determining the audience 

Verification information often has a distinct audience. An audience may be characterized in 
terms of its role, its level of understanding of the forecast process and its interest in forecast 
quality. One will have to make an estimate of the level of expertise that an audience has and 
adjust the verification products accordingly. Analogously to Werner et al. (2019), it is useful to 
distinguish several audiences of verification information: forecast users, forecasters, 
forecasting system developers and administrators. 

5.2.1 Forecast users 

Forecast users are those who are responsible for their own forecast-informed decisions. This 
audience may be interested in the degree to which forecasts improve their decisions. Forecast 



65 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 

users may vary from casual users (for example, members of the public who occasionally 
consult a forecast) to sophisticated users who use forecasts frequently and may have a 
formalized approach to using them in decision-making. The latter are likely to have a good 
understanding of the qualities they are looking for in a forecast, and hence the verification 
information will need to include measures of those qualities. Different users employ different 
decision support systems or processes of varying levels of complexity and sophistication. Some 
users may be able to utilize verification information explicitly in their decision-making process. 
In hydrological verification, insufficient location specificity often poses challenges for the users 
in utilizing forecast information. For example, the United States NWS issues official river 
forecasts only at the so-called “forecast points”, which are usually collocated with stream 
gauge stations. If one lives away from such forecast points, the forecast information may or 
may not be relevant to one’s location due to the very large control exerted by the local 
physiography on hydrological and hydraulic processes. The situation is similar with flash flood 
forecasts in that watches and warning are generally issued over large areas though flash 
flooding usually occurs only over a small fraction of the area. Similar challenges exist with 
verification information.  

5.2.2 Forecasters  

The role of forecasters is to provide the best possible forecasts. To do so they often adjust 
automatically produced forecasts. Such adjustments are based on the latest observations and 
expert knowledge of the hydrometeorology and hydrology of their service area as well as the 
forecasting system.  

Verification information provides the forecasters with objective guidance on the quality and 
skill of the automatically produced forecasts in different forecasting situations. Verification 
serves a critical role in communicating the forecast information for user decision-making by 
aiding the forecaster to assess and convey the level of confidence or uncertainty in the forecast 
and to explain how the official forecast is arrived at. Verification information is also used to 
provide feedback to forecasters to improve the forecasts. Such feedback works best if the 
information is given as quickly as possible after the forecasts have been issued and the 
verifying observations have become available (see, for example, Azevedo and Bernard, 1995; 
Kulik and Kulik, 1988; White, 1968). 

5.2.3 Modelers and developers 

The role of forecasting system developers is to improve forecast quality by improving, newly 
developing or implementing various elements in the forecast system and in the forecast 
process. This may be carried out in a number of different ways, including selecting and 
configuring the most skillful NWP products, improving hydrological observations, and 
implementing or improving downscaling techniques, hydrological, hydraulic and water 
management models, DA or statistical processing techniques. Sometimes, the role of 
developer is taken on by members of the research community who are experts in these and 
other elements of a forecasting system and are intimately familiar with its configuration. 
Depending on whether an intermediate or end product is verified, different verification metrics 
may be necessary. Therefore, forecasting system developers tend to be well versed in the 
available metrics and their characteristics. It is hence common for forecasting system 
developers to also be the developers of forecast verification systems. 

5.2.4 Administrators  

The role of forecasting system administrators is to maintain, operate and improve the forecast 
systems, products and services. As part of that role, they are likely to want to know how well 
the forecasting system performs – both in terms of system operation (are forecasts produced, 
and in time?) and forecast quality. They are also likely to want to know how forecast quality 
improves over time. This information may be shared with a wider audience such as clients to 
whom the forecasts are supplied. 
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Administrators may not have a very intimate understanding of the technical nature of the 
forecasting process and may be interested only in the quality of the end product, and not that 
of the intermediate products such as precipitation forecasts or hydrological model simulations. 
The overall quality of the forecasting system may be expressed with a small set of key 
performance indicators agreed upon by the administrators and the stakeholders. 
Administrators are likely to understand the extent to which the key performance indicators are 
understood by third parties to whom an organization supplies its forecasts or from whom 
funding originates. 

5.3 Selecting verification tools 

Verification is generally a data intensive process for which software tools are used in most 
cases. One may use such tools to pair the forecasts with the verifying observations, compute 
summary metrics and skill scores, construct diagrams and visualize the results, among others. 

Tools for verification include software packages that are specifically designed for forecast 
verification and generic tools that may be configured for forecast verification. Standalone 
software tools dedicated to verification include the Ensemble Verification System (Brown 
et al., 2010), the verif package (https://github.com/WFRT/verif) and the Model Evaluation 
Tools (https://dtcenter.org/community-code/model-evaluation-tools-met). Such tools come 
with ready-made verification functions that have been tested by many users and hence may be 
assumed to be free of functional errors (that is, the actual computation of a metric is correctly 
done). Such tools come at the expense of having to familiarize oneself with operating them 
and preparing the input data for ingestion by the tools. Generic tools include scripting 
languages such as R, Python and MATLAB and spreadsheet software such as LibreOffice Calc 
and Microsoft Excel. With these tools, verification data may be managed and used as inputs to 
functions written by the users. In-between solutions comprise libraries of verification functions 
that are written for use in generic tools such as the R verification library (NCAR – Research 
Applications Laboratory, 2015) and the Python verif library. 

When deciding on a tool or tools for verification, one should consider the following questions: 

• Is the tool able to perform the verification task? 

• Are the information technology, computing capacity and data storage required for the 
tool (for example, software, scripting tools) available in or to my organization? 

• Is the tool available for my computing platform or operating system?  

• What is the level of maturity of the tool? Is documentation available? Is the tool 
supported? Does it have an active user community?  

• Is the tool being actively developed? Is it open source so that, in principle, development 
and enhancement may continue by members of the community? 

• What are the licensing conditions and associated costs, if any? 

5.4 Collecting data 

Once the verification task has been defined, it is necessary to identify the required data and to 
collect or produce them. The subject forecast may originate from an existing archive or may 
have to be retrospectively generated through hindcasting (that is, reforecasting). If forecast 
quality is to be compared against a baseline, the baseline forecast needs to be collected or 
produced as well. The forecasts may be verified against observations or against model 
simulations. Whereas the streamflow forecast reflects both the uncertainty in the input forcings 
and the hydrological uncertainty, the streamflow simulation reflects only the latter, thereby 
allowing decomposition of the two uncertainties (see Case 1 in Chapter 7).  

https://github.com/WFRT/verif
https://dtcenter.org/community-code/model-evaluation-tools-met
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In hydrological verification, large-to-extreme events are almost always of particular 
importance. Because they occur less frequently, their verification necessarily requires longer 
periods of record. In addition, the sample size requirements for verification of probabilistic 
forecasts are significantly larger than those for single-valued forecasts. For location-specific 
verification of ensemble streamflow forecasts of large-to-extreme events, multidecadal periods 
of record are usually necessary (Brown et al., 2014a, 2014b). 

Forecasts to be verified often reside in an archive of operationally produced forecasts which 
reflect various changes that have been made over the period of the archive to the NWP and 
hydrological models. For example, the NWP models may have been improved over time, 
leading to improvements in the forecast forcings for the hydrological models. Similarly, model 
physics, calibration, DA or postprocessing components of the hydrological forecasting system 
may have been improved as well. Hence, verification of a multidecadal archive of operationally 
produced forecasts is not likely to reflect the skill of the forecasts generated from the current 
forecast systems and processes. To obtain large enough samples of forecasts from the current 
or a recent version of the forecast system, retrospective generation of forecasts, or hindcasting, is 
likely to be necessary. For this reason, hindcasting is often critical to large-sample hydrological 
verification, particularly in verification of probabilistic forecasts of large events.  

Large-sample hydrological hindcasting necessarily requires a multidecadal reforecast dataset of 
the input variables (typically precipitation and temperature) from a fixed, or frozen, version of 
the NWP model. Such a dataset, however, may not exist or be readily available. Even if a 
reforecast dataset of the input variables is available, large-sample ensemble streamflow 
hindcasting for many locations is a resource-intensive undertaking. Therefore, it is particularly 
important that approximate sample size requirements be assessed for verification of rare 
events as part of the planning and design of the verification task. It is very possible that the 
above estimates may necessitate adjustments to the task. 

5.5 Preparing data 

For the verification tool to ingest the collected or generated data, they may have to be cast 
into a specific format first. For example, the verif tool requires data to be stored as a text file 
in a bespoke format or as a NetCDF-CF file. Creation of such files may require the use of 
another tool. In such a case, one will need to thoroughly assess the quality of the reformatted 
data to ensure their integrity with respect to the original data. 

Often, probabilistic or ensemble forecasts are collapsed into ensemble mean or median 
forecasts and verified as single-valued forecasts by themselves or comparatively with other 
single-valued forecasts. If the verification tool does not support such conversion, the users will 
have to make the conversion themselves as part of the data preparation process. 

Once forecasts and observations are collected, they must be paired (that is, the forecasts must 
be associated with their verifying observations). Depending on the verification software used, 
one may have to perform the pairing oneself or the tool may perform this task. For example, 
the verif tool requires paired data as input, whereas the EVS accepts separate files for forecast 
and observation data in multiple formats and pairs them automatically based on the user-
chosen options. 

Conceptually, pairing is a simple process, but in practice one may encounter various issues 
related to time stamping, time zones, time steps, forecast generation and valid times, and 
time scales of the forecast and observation (for example, instantaneous, time-averaged or 
accumulated). Sometimes, it may not be possible to achieve the initially desired pairing due, 
for example, to mismatches in forecast and observation valid times. In such cases, only 
approximate pairing may be possible. Once pairing has been completed, one will need to 
thoroughly assess the quality of the paired data to ensure their integrity with respect to the 
original forecast–observation pairs.  
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Most verification tasks require the full dataset to be subsampled for stratified verification or 
conditional verification. Predictability of precipitation and, to a lesser extent, temperature, 
varies significantly by season (for example, warm versus cool, wet versus dry), which leads to 
seasonally varying predictability of streamflow. Hence, it is common to stratify the forecast–
observation pairs for different seasons and carry out verification for each season. In other 
cases, one may want to condition verification on some event of interest such as the observed 
peak streamflow exceeding 200 m3/s or the observed 2 m air temperature being below 
freezing. Such conditioning requires the data to be subsampled prior to inputting to a 
verification tool or, if the tool allows for it, within the verification tool. Some verification tools, 
such as the EVS, will stratify paired data according to forecast lead time automatically. If the 
tool does not have such functionality, users will need to perform stratification themselves. 

Verification of streamflow forecasts should preferably be carried out for individual locations 
since local physiography exerts great control on hydrological and hydraulic processes at the 
catchment scale. If it is necessary to increase sample size for verification of less frequent 
events, one may have to sort forecast points into hydroclimatologically similar groups that are 
more likely to share similar predictability and predictive skill. Such “pooling” of forecasts for 
increased sample size must be carried out with care to avoid mixing disparate forecasts. For 
example, pooling forecasts for headwater and downstream locations or flow volume forecasts 
for the snowmelt and dry seasons together is likely to produce distorted and misleading 
verification scores (Hamill and Juras, 2006). 

Catchment size is an important factor for streamflow forecast quality, because larger 
catchments tend to be more predictable due to spatio-temporal smoothing of the hydrological 
processes. Hence, grouping forecasts from catchments of very different sizes is likely to 
produce confounding verification results. For large-scale events such as hurricanes and tropical 
storms, pooling may lead to biased verification results for large-to-extreme events. In such 
cases, the forecast–observation pairs for adjacent basins are likely to be correlated, and hence 
the effective sample size from pooling is likely to be smaller than the nominal sample size. 
When pooling data from hydroclimatologically similar catchments, one may first assess 
similarity among different basins by lowering the discharge threshold and comparing the 
verification results from pooling smaller observed events with those from location-specific 
verification. If the results differ significantly, the pooled locations are not likely to share similar 
predictability and predictive skill for larger events. 

5.6 Computing verification statistics 

Once the forecasts and observations have been paired and subsampled as necessary, 
verification metrics may be computed. Summary metrics are usually expressed as single 
numbers. Along with the values for the metrics, it is necessary to make available the metadata 
which describe the forecast used, the observation used, the period of record, and any 
subsampling or resampling used. The verification task may require skill scores to be computed, 
in which case the metadata should also identify the reference forecast used. 

Often, the verification task requires uncertainty bounds to be computed. A commonly used 
technique for this is bootstrapping (Efron, 1979), which computes the metric many times, each 
time randomly subsampling the forecast–observation pairs with replacement. Bootstrapping 
yields an empirical distribution of the metric from which uncertainty bounds may be estimated 
(see Example 3 in Appendix A for a hands-on example using the EVS). If uncertainty bounds 
are not estimated, it is a good practice to provide the sample size information as a proxy. If 
the focus is on verification of large-to-extreme events, it is a good practice to identify the 
forecast–observation pairs for notable events by their names (for example, Hurricane Agnes in 
1972 or Hurricane Harvey in 2017 in the United States). Many users of forecast information 
use such events as references. 

Several verification measures are expressed as diagrams with standardized layouts. As 
described in Chapter 4, such diagrams include the ROC curve, Talagrand diagram (or rank 
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histogram), reliability diagram, attributes diagram and discrimination diagram. Most 
verification software tools will directly save these diagrams as image files, and in some cases, 
such tools will make available the values used to compose them. As with the metrics with 
numerical results, such diagrams need to be accompanied by metadata, some of which are 
often included in the diagram itself. 

5.7 Key points 

• Several steps are generally necessary to produce useful verification results. Each step 
involves several choices and decisions which, if not well thought out in advance, may 
lead to avoidable trials and errors.  

• The high-level steps include: defining the verification objectives, determining the 
audience, selecting verification tools, collecting data, preparing data (including pairing), 
and computing verification statistics.  

• The verification process may vary greatly depending on the verification task. It is hence 
very important to clearly define the verification objectives before starting. 

• The verification audience determines how verification information may be presented. 
Possible audiences include forecast users, decision support staff, forecasters, forecasting 
system developers and administrators. 

• Verification is generally data intensive and hence software tools are almost always used. 
Care should be taken to select a tool or tools that will meet the verification objectives 
and fit the resources available to the organization and to those who will use them. In 
addition, the tools should be supported, maintained and updated well into the future. 

• The data required for verification may be readily available or may have to be produced 
through hindcasting (that is, reforecasting), which has potentially significant resource 
implications. 

• The collected or generated data may have to be cast into a specific format for ingestion 
by the verification tool. Forecasts and observations must be paired for verification. 
Depending on the verification task, stratification, subsampling or conditioning of the full 
dataset may be necessary. 

• Once the forecasts and observations are paired and subsampled as necessary, 
verification metrics may be computed. Several verification measures are expressed as 
diagrams with standardized layouts. Often, the verification task requires uncertainty 
bounds to be computed. 
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CHAPTER 6. VISUALIZATION OF VERIFICATION INFORMATION 

In the verification, decision and response process, verification information will have to be 
communicated to a decision-making body. This chapter concerns the visualization of 
verification information that originates from the technical process of verification and is then 
communicated for the verification-informed decision (that is, the first arrow in Figure 23).  

The verification results must be presented such that they address the questions posed in the 
verification task. Verification results may be laid out in graphical or tabular form. While most 
verification tools have the option to display verification results, the user of verification tools 
may want to use some other tools for more advanced display capabilities. For the above, the 
user will have to confirm that the output from one tool is ingestible by the other. In some 
cases, the verification questions may be partly answered by displaying the raw data 
themselves. The raw data are often shown graphically as time series or scatter plots. While 
many verification tasks may require summary metrics only, visualization of the underlying data 
is also often helpful in interpreting the summary metrics (as well as to perform quality control 
on the data). 

6.1 Visualization of forecast verification 

Verification information may include raw data, technical diagrams, summary metrics and 
metadata. For effective and clear communication of graphical verification metrics, graphing 
best practices should be followed to avoid the information being misinterpreted by the 
recipient. There is ample literature on this topic; a good starting point may be found in 
Tufte (2013). 

6.1.1 Raw data 

A first impression of the quality of the forecasts can be obtained from exploring the raw data 
for forecasts and their verifying observations. This includes the original forecast hydrographs, 
time series and scatter plots. 

Deterministic, ensemble and probabilistic forecasts can all be displayed as hydrographs in 
some form. Usually, a hydrograph is depicted by a single forecast only (that is, a forecast valid 
from the initialization time to the end of the forecast horizon or the maximum lead time). For 
ensemble and probabilistic forecasts, often only the mean or the median (or some other 
quantile) forecast is displayed. It is important to note that, strictly speaking, such plots are not 
hydrographs in that they do not represent plausible realizations of a hydrograph, whereas the 
individual ensemble members do. For this reason, care should be taken when visually 
comparing ensemble mean or quantile forecast “hydrographs” with the verifying observed 
hydrograph, as the former are likely to appear smoother than the latter. Figure 24 shows an 
example display of an ensemble forecast hydrograph and the verifying observed hydrograph. 
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Figure 24. An ensemble forecast with verifying observations plotted as hydrographs 

Time series plots may be used to visualize multiple forecasts with their verifying observations. 
Often, these plots show forecasts for a single lead time only (see Figure 25 as an example). 

 
Figure 25. A timeseries plot of forecasts made 48 hours ahead and their verifying 

observations for a single location. Note that this plot shows a composite of multiple 
forecasts, hence one could have opted to not show this as a continuous time series. 

Scatter plots may be used to visualize multiple forecasts and their verifying observations. Each 
of these forecast–observation pairs is represented by a single point in the scatter diagram (see 
Figure 26 for an example), or by multiple points for ensemble forecasts. In the latter case, for 
each verifying observation there are multiple forecasts associated, each representing an 
ensemble member (see Figure 27 as an example). 
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Figure 26. A scatter plot of forecasts made 48 hours ahead and their verifying 

observations for a single location 

Sometimes, depending on the distribution of forecasts and observations, many points may 
crowd the same locations in a scatter plot. This prevents the reader from accurately assessing 
the distribution of the forecast and observations. This issue is often overcome by using 
transparent symbols that are shaded differently to indicate the number of forecast-observation 
pairs that each symbol represents. This is done in Figure 26 and Figure 27; light grey circles 
indicate single points whereas dark grey and black circles indicate multiple points in each 
circle. 

 
Figure 27. A scatter plot of ensemble forecasts and their verifying observations 

Scatter plots may also be used to display forecasts at multiple lead times versus verifying 
observations. For such plots, one may colour-code the markers to differentiate different lead 
times (see Figure 28 as an example). 
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Figure 28. A scatter plot of forecasts at multiple lead times with their verifying 

observations 

6.1.2 Technical diagrams 

Some verification measures are displayed as diagrams with predefined layouts. They include 
the reliability diagram, attributes diagram, ROC curve, rank histogram and discrimination 
diagram; section 4.3.3 contains a description of these. An example is shown in Figure 29. Note 
that the plot also displays metadata, including the location, the forecast lead time and the 
event definition. 

 
Figure 29. Reliability diagram for 72-hour forecasts for a single location. This plot 

was drawn using the R verification package (NCAR – Research Applications 
Laboratory, 2015). 



 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 74 

6.1.3 Summary metrics 

Summary metrics may be communicated in various ways, including in descriptive text, in 
tabular form, in a graph or on a map. Tables, graphs and maps allow for the summary metrics 
to be shown as a function of some property of the forecast. For example, many verification 
studies report summary metrics as a function of forecast lead time for a particular location. 
Figure 30 shows an example of this. Maps show summary values as a function of space 
(Figure 31 shows an example of this). Tables may do both, that is display summary metrics as 
a function of both location and lead time. 

 
Figure 30. Brier skill score (BSS) as a function of lead time 

 
Figure 31. Mean absolute error of a precipitation forecast, presented as a map. 

The numbers alongside the colour-coded points show a location identifier  
and the value of the metric.  

Source: Example taken from https://github.com/WFRT/verif/wiki/Plotting-options. 

https://github.com/WFRT/verif/wiki/Plotting-options
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If forecasts are regularly verified over time, the verification data may be presented as a time 
series. This will add additional dimensions to the data, namely the time at which the 
verification was done and the period it pertained to. Figure 32 illustrates this. Here, the 
verification is carried out every few months. Over time, this yields a time series of verification 
data which allows one to assess the changes in (a particular type of) forecast quality over 
time. 

 
Figure 32. Lead time at which the CRPSS reaches the value of 0.25, as a function of 
time. The plot shows that over time (from 1998 through 2022), the CRPSS of the 

forecast has reached 0.25 at an increasingly longer lead time. 
Source: https://charts.ecmwf.int/products/plwww_m_eps_tpcrpssreach_ts?area=Europe 

It may not be assumed that all verification users will be familiar with how a particular metric is 
computed. This unfamiliarity limits the user in being able to properly interpret the value of the 
metric. If one suspects that users may not be familiar with how the metric is computed, it is a 
good practice to include a reference to the exact composition of the metric or, better yet, a 
guide as to how the metric should be interpreted. Figure 33 shows an example; below the 
graph showing the metric value (in this case, the CRPSS), a brief description of the metric is 
given and a link to a more detailed definition is provided. 

https://charts.ecmwf.int/products/plwww_m_eps_tpcrpssreach_ts?area=Europe
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Figure 33. Web page that shows verification information, a brief description of the 

metric shown and a reference to a more elaborate definition of that metric  
Source: Example taken from 
https://charts.ecmwf.int/products/plwww_m_eps_tpcrpssreach_ts?area=Europe 

6.2 Metadata  

Verification information is characterized by a large amount of metadata. This metadata 
describes the specific set of forecasts that may be chosen according to the time period of 
verification interest (for example, forecasts produced in the calendar years 2012 and 2013). 
The forecasts may be conditioned on various attributes, including issue time or valid time. The 
verification measure may pertain to a specific subset of the data based on the exceedance or 
non-exceedance of a threshold value by either the observation or the forecast. The verification 
may pertain to a single location or to a set of locations. It may pertain to a single lead time or 
possibly be aggregated over multiple lead times. All of these are choices made in the 
verification process and thus become properties of the verification data. The number of these 
properties quickly adds up and, by construction, so does the number of combinations thereof. 

Example: Upon verification of a set of hydrological forecasts for the Meuse River, summary 
metrics (Table 9) are available for four forecast locations, two forecast products and two 
different parameters (water level and streamflow rate). Verification was done separately for 
17 different lead times up to 120 hours at 3-hour to 6-hour intervals. The verification was 
done separately for the entire dataset and for various subsets of the data. Here, the latter are 
denoted with a P value. For continuous forecasts, these P values indicate a subset defined by 
the observation exceeding, for example, the 90% quantiles of the empirical distribution. For 
those metrics that are used to verify a categorical forecast, the P value denotes the threshold. 
A total of seven summary metrics are computed, and a bootstrapping procedure yields a lower, 
a central and an upper estimate.  

https://charts.ecmwf.int/products/plwww_m_eps_tpcrpssreach_ts?area=Europe


77 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 

This yields summary metric values for each of the four locations, two forecast products, two 
parameters, seven lead times, two P-values, seven summary metrics and three estimates (a 
grand total of 11 424 values). Each of the rows in the table contains a summary metric value 
which can be communicated to the verification audience. No single (effective) visualization will 
show all, and hence a selection must be made, and this selection must be communicated to 
the audience. 

Table 9. First few rows of a database table containing verification metadata and 
verification data. The actual value of a summary metric is stored in the “value” 

column. All other columns comprise metadata items, and for each of these, multiple 
values exist in the database. For example, the database comprises multiple locations, 

multiple products that are verified, and so on. 

 

Verification information may be communicated using various media, including paper or screen. 
Most figures and tables will be 2-dimensional. This allows only a subset of metadata properties 
to be shown, hence the verification information will have to be conditioned on some of the 
remaining properties. The visualization will have to clearly indicate on which properties the 
data are conditioned. A trivial example is “location”; a summary metric versus lead time graph 
may pertain to a single location (see, for example, Figure 30). This location will need to be 
communicated in the graph title, caption or similar metadata. In similar fashion, the graph’s 
metadata will need to identify for which variable (for example, streamflow or water level) and 
for which forecast product it was made. 

It may be helpful for a user to explore verification data using a tool that makes it possible to 
condition the verification results on metadata properties. This requires the verification results 
to be stored in a structured manner, that is, in a table like the one in Table 9 or in a database, 
and a tool that can access and visualize that data. Such a tool may be a scripting language 
such as MATLAB, R or Python, or a bespoke tool. Figure 34 shows an example of such a 
bespoke tool. This “dashboard” based on Shiny (Chang et al., 2023) accesses a large R 
dataframe which is essentially a database. The dashboard allows a user to compose his or her 
own visualizations by navigating the available metadata items. 
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Figure 34. Example of a tool (unpublished) that allows a user to compose bespoke 

visualizations of summary metrics 

6.3 Key points 

• Verification information may include raw data, technical diagrams, summary metrics and 
metadata. 

• Verification information generally includes a large amount of metadata. 

• Verification can yield a large number of verification statistics. These cannot all be shown 
in a single plot or table, and hence accompanying metadata will have to identify the 
“dimensions” that are not explicitly communicated in the plot or table. 
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CHAPTER 7. CASE STUDIES 

This chapter presents several cases of streamflow forecast verification, as listed in Table 1. 
Though presented individually, the cases collectively encompass a wide range of analysis one 
may encounter in the verification of hydrological forecasts. The reader may consider mixing 
and matching the various elements described herein based on the verification task at hand and 
introduce additional elements as necessary. Appendix A provides hands-on examples of 
streamflow forecast verification, as listed in Table 2.  

Verification statistics are a condensation of the comparison between the forecast and the 
verifying observation wherein the full information content resides. It is therefore a good 
practice to visualize the raw data in hydrologically and hydrometeorologically interpretable 
terms, such as in scatter plots, box-and-whisker plots (for ensemble forecasts), hydrographs 
and hyetographs, so that one may tangibly relate the verification statistics with the physical 
world. Such a practice is in fact often necessary to perform quality control on the data. If the 
verification statistics and the raw data do not seem to agree, it may be necessary to examine 
the data more closely and vet the verification process before continuing. 

7.1 Case 1. Verification of single-valued streamflow forecast with 
uncertainty decomposition 

Example 1 in Appendix A provides a hands-on exercise for this case using the EVS. Case 1 
verifies single-valued streamflow forecasts for the New River at Galax (GAXV2), Virginia, 
United States, which is the outlet of a 2 397 km2 headwater basin in the service area of the 
Ohio River Forecast Center (OHRFC) of the United States NWS. Throughout this chapter and 
Appendix A, five-character identifiers such as GAXV2 indicate the NWS forecast points. The 
streamflow forecast was generated with the Sacramento soil moisture accounting (SAC) 
(Burnash et al., 1973) and UHG routing (Chow et al., 1988) models. The SAC was forced by 
the Global Ensemble Forecast System (GEFS) v12 (Guan et al., 2019) ensemble mean 
precipitation reforecast. The period of record is 1989 to 2004.  

To decompose the total uncertainty into input and hydrological uncertainties (see Chapter 2), 
streamflow simulation was also generated with the SAC using observed mean areal 
precipitation (MAP) as input. Hydrological uncertainty is further decomposed into the IC 
uncertainty and the rest (that is, the sum of parametric, structural and other uncertainties) 
(see Chapter 2) by updating the ICs of the hydrological models in a real-time mode. The 
automatic state updating procedure used in this case is based on the assimilation of 
observations of streamflow, MAP and mean areal evapotranspiration via adaptive conditional 
bias-penalized ensemble Kalman filter (Seo et al., 2022; Shen et al., 2022b). 

The focus of this case is on verification of streamflow forecasts and uncertainty decomposition 
for significant events. Therefore, only significant events were identified from the observed 
streamflow data and the resulting partial-duration time series was used. A significant event is 
defined as a hydrograph whose peak flow exceeds 175 m3/s. This corresponds to 
approximately the 90th percentile of observed flow at this location (for reference, the flood 
flow is 937 m3/s). Once a significant event was identified, the beginning and ending hours of 
the event were determined by subtracting and adding 5 days from and to the first and last 
hours of the partial-duration series exceeding the threshold, respectively. The choice of 5 days 
was made to include most of the significant portions of the primary baseflow response. The 
primary verification measure used is the RMSE, which reflects multiple forecast attributes (see 
Equation 48) and is representative of the overall forecast quality. Figure 35 shows the RMSE 
versus lead time and the uncertainty decomposition results. 

In Figure 35, the solid, dashed and dotted lines represent the RMSE of the streamflow forecast 
forced by the GEFS ensemble mean precipitation forecast, streamflow simulation forced by the 
observed MAP, and streamflow prediction forced by the observed MAP but with state updating, 
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respectively. The recurrence of peak RMSE values every 24 hours is due to the diurnal 
variations and forecast cycles in the skill of precipitation forecasts (Brown et al., 2014a, 
2014b; Siddique et al., 2015). The difference between the solid and dashed lines represents 
the input uncertainty. The difference between the dashed and dotted lines represents the initial 
condition (IC) uncertainty as inferred via state updating (that is, adjusting the ICs in real time 
to bring the simulated flow in line with the observed in the immediate past) (Shen 
et al., 2022b). Figure 35 indicates that the bulk of the input uncertainty rises quickly within the 
first day or so of lead time, hydrological uncertainty is very large when only significant events 
are considered, and large IC uncertainty exists over short lead times. 

  
Figure 35. RMSE versus lead time of streamflow forecast for GAXV2 and its 

decomposition into input and hydrological uncertainties. CMS: cubic metres per 
second. 

One may decompose the MSE into contributions from bias in the mean, bias in variability and 
deficit in correlation (Murphy and Winkler, 1987; Nelson et al., 2010):  

𝑀𝑀𝑆𝑆𝑀𝑀 = (𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑌𝑌)2 + (𝜎𝜎𝑋𝑋 − 𝜎𝜎𝑌𝑌)2 + 2𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌�1 − 𝜌𝜌𝑋𝑋,𝑌𝑌� (48) 

where 𝜇𝜇𝑋𝑋 and 𝜇𝜇𝑌𝑌 denote the mean of the forecast and verifying observation, respectively, 𝜎𝜎𝑋𝑋 
and 𝜎𝜎𝑌𝑌 denote the standard deviation of the forecast and verifying observation, respectively, 
and 𝜌𝜌𝑋𝑋,𝑌𝑌 denotes correlation between the forecast and verifying observation. The above 
decomposition is not related to the CR or LBR decompositions described in Chapter 3. 
Figure 36 shows the MSE decomposition result for the total uncertainty where Comp1, Comp2 
and Comp3 represent the first, second and third components in Equation 48, respectively. 
Figure 36 shows that all three components contribute significantly to total uncertainty for this 
location and that, overall, the third component is the largest contributor. Improving 
correlation, 𝜌𝜌𝑋𝑋,𝑌𝑌 in Equation 48, across all forecast horizons generally requires improving NWP, 
hydrological modelling and model calibration. 



81 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 

 
Figure 36. MSE decomposition for streamflow forecast for GAXV2. CMS: cubic metres 

per second. 

7.2 Case 2. Comparative verification of multiple single-valued streamflow 
forecasts 

Case 2 is an adaptation of Jozaghi et al. (2021) and verifies single-valued streamflow forecasts 
from multiple forecast systems. The forecasts included are the singled-valued River Forecast 
Center (RFC) forecast, ensemble mean forecast generated with the Hydrologic Ensemble 
Forecast Service (HEFS) (Demargne et al., 2014), single-valued medium-range forecast from 
the National Water Model (NWM) (Graziano et al., 2017), and ensemble mean forecasts forced 
by precipitation and temperature forecasts from the GEFS (Toth and Kalnay, 1997; Cui 
et al., 2012) and the North American Ensemble Forecast System (NAEFS) (Zhu and 
Toth, 2008). The NAEFS forcing forecast combines the ensemble forecasts from the 
Meteorological Service of Canada and the United States NWS (Zhu and Toth, 2008). Except for 
the NWM forecast, all other streamflow forecasts are generated at the NWS Middle Atlantic RFC 
(MARFC). The forecasts are verified for the Delaware River Basin (DRB), which has a drainage 
area of about 33 000 km2 and includes parts of the states of Delaware, New Jersey, New York 
and Pennsylvania in the United States. For details of the models and the forcings used, refer to 
Jozaghi et al. (2021).  

Due to the very short period of record of January 2017 to October 2020, it was not possible to 
verify for individual forecast points. Instead, all forecast points within the basin were pooled 
together for aggregated verification. Because the magnitude of discharge and the forecast 
error characteristics vary from one location to another, basin-aggregated verification does not 
represent the individual forecast points equally. To address this issue, one might consider 
some form of normalization based on catchment size and possibly other hydroclimatological 
attributes. Such an approach, however, does not allow for quantitative interpretation of 
verification measures expressed in physical units, such as RMSE, and was not pursued in this 
case study. 
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In general, streamflow at headwater locations is significantly less predictable than that at 
downstream locations due to the large input and hydrological uncertainties associated with 
rainfall-runoff and hillslope routing processes. Predictability is larger for downstream locations 
owing to the spatio-temporal aggregation and smoothing over large areas and significantly 
smaller hydrological uncertainty associated with channel routing. To account for this variation 
in predictability with different hydrological controls, the forecast points were grouped into 
11 headwater and 15 downstream locations and verified separately. One could also consider 
stratification with respect to season to account for the variation in predictability with 
hydroclimatological controls. Such additional stratification was not used in this case study due 
to insufficient sample size. 

Flood forecasting is arguably the most important service provided by the MARFC, and hence 
verification of large flows is of particular interest. Accordingly, the forecasts are verified 
conditionally on the verifying observed flow exceeding the 95th percentile at the respective 
forecast points, in addition to being verifyied unconditionally by including all pairs of forecasts 
and verifying observations within the DRB. In general, flood flows are much larger than the 
95th percentile flows. Larger thresholds, however, would render the sample size too small to 
yield useful results. The choice of the 95th percentile is hence a compromise between keeping 
the sampling uncertainty to a tolerable level and still being able to assess comparative 
predictive skill for high flows. The verification measures used are the MSE, ME and CORR (see 
section 4.3). Figures 37 through 40 show the results.  

 

Figure 37. RMSE versus lead time of different streamflow forecasts conditional on the 
verifying observation exceeding the 95th percentile flow for downstream (top) and 

headwater (bottom) forecast points in the DRB 

In the graphs in Figure 37, the maximum lead time varies from one streamflow forecast to 
another due to the different forecast horizons in the forcing forecasts (see Jozaghi et al., 2021 
for details). Due to the daily forecast cycle at MARFC, not all streamflow forecasts are 
generated immediately after the forcing forecasts become available. This operational constraint 
translates, in effect, to penalties in lead time of 6 hours for the GEFS and NWM forecasts and 
12 hours for the NAEFS forecast. 

Figure 37 shows the conditional RMSE versus lead time of single-valued and ensemble mean 
streamflow forecasts for all downstream (top) and headwater (bottom) forecast points in the 
DRB. The sample size ranges from 453 to 517 and from 751 to 857 for headwater and 
downstream locations across all lead times, respectively. As expected, the downstream points 
are much more predictable, with the conditional RMSE plateauing at about 4 days into the 
future. The headwater results show peak RMSE values recurring every 24 hours due to a 
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combination of the diurnal cycle in the skill of precipitation forecast and some forecasts 
verifying rather poorly for a very small number of very large observed flows. Because forecasts 
are issued daily, multiple forecasts are verified against the same very large observed flow 
across the forecast horizon, resulting in the cyclical pattern. Figure 37 indicates that, overall, 
the RFC single-valued and NAEFS ensemble mean forecasts have the smallest RMSEs for high 
flows for downstream and headwater locations, respectively. 

Figure 38 shows the RMSE versus lead time for all ranges of verifying observed flow, or the 
unconditional RMSE, for headwater locations. The unconditional RMSE results for the 
downstream locations are qualitatively similar to the conditional results shown in the top panel 
of Figure 37. The sample size for the unconditional results ranges from 8 750 to 9 750 and 
from 14 150 to 16 000 for headwater and downstream locations across all lead times, 
respectively. With all ranges of flow, the skilful lead time is increased to about 3 and 5 days or 
longer for headwater and downstream locations, respectively. Figure 38 shows that the relative 
unconditional performance among the forecasts for headwater locations is quite different from 
the relative conditional performance seen in the bottom panel of Figure 37, and that the 
single-valued RFC and ensemble mean HEFS forecasts have the smallest unconditional RMSE. 

 
Figure 38. Same as bottom panel of Figure 37 but for all ranges of flows 

Figure 39 shows the conditional (top) and unconditional (bottom) ME for downstream 
locations. Those for headwater locations are qualitatively similar. The bottom panel of 
Figure 39 shows that the HEFS forecast is unconditionally unbiased, whereas the GEFS and 
NAEFS forecasts are unconditionally biased high (that is, over-forecast in the mean sense), 
with the bias increasing with lead time. Figure 39 illustrates a common challenge in streamflow 
forecasting, where smaller bias in the GEFS and NAEFS forecasts for high flows is achieved at 
the expense of large high bias in flows of all magnitudes, whereas the unconditional 
unbiasedness of the HEFS forecast is achieved at the expense of large low bias in high flows. 
Jozaghi et al. (2021) describe a multimodel streamflow prediction approach to address the 
above via composite conditional bias-penalized linear regression which explicitly considers 
type II conditional bias. 
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Figure 39. ME versus lead time of different streamflow forecasts for downstream 

forecast points in the DRB conditional on the verifying observation exceeding 
the 95th percentile flow (top) and for all flows (bottom) 

Figure 40 shows the conditional CORR for downstream (top) and headwater (bottom) 
locations. The unconditional CORR results are qualitatively similar. Figure 40 shows that, at 
headwater locations, predictability is much smaller and the predictive skill diminishes much 
more quickly with lead time than at downstream locations. The NWM and HEFS forecasts show 
noticeably lower CORR for downstream and headwater locations, respectively, for attribution of 
which close examination of the raw data is necessary.  

 
Figure 40. Same as Figure 37 but for CORR 

7.3 Case 3. Verification of ensemble streamflow forecast for headwater 
and downstream locations 

Example 2 in Appendix A provides a hands-on exercise with a smaller version of this case 
using the EVS. Case 3 assesses reliability, resolution, discrimination and sharpness (see 
Chapter 3 and Chapter 4) of the NAEFS ensemble streamflow forecast produced by the MARFC 
using the mean CRPS and its CR decomposition (Hersbach, 2000), reliability diagram (Hsu and 
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Murphy, 1986) with forecast frequency histogram, and ROC curves (Stephenson and 
Jolliffe, 2003) (See Chapter 4). Recall that NAEFS-forced ensemble mean streamflow forecasts 
were used in Case 2 for comparative verification of single-valued forecasts. The period of 
record is less than three years, which is too short for location-specific probabilistic verification 
of flood or near-flood flows. To increase the sample size, all 11 headwater and 15 downstream 
forecast points in the DRB are pooled together for forecast group-aggregated verification as in 
Case 2.  

The mean CRPS is a representative measure of ensemble forecast quality, reflecting multiple 
attributes of ensemble forecasts (see Equation 49). As with the RMSE for single-valued 
forecasts, the mean CRPS is expressed in the same physical unit as the predictand itself. 
Figure 41 shows the mean CRPS of NAEFS-forced streamflow forecasts for downstream (top) 
and headwater (bottom) locations as generated with the EVS. In each graph, the “All data” 
curve represents the unconditional result based on all available forecast–observation pairs. The 
other four curves are conditioned on the verifying observation exceeding the 50th, 75th, 95th 
and 99th percentiles of observed flow. The sample sizes for the 95th and 99th percentiles are 
2 301 and 456, respectively, for downstream locations, and 197 and 44, respectively, for 
headwater locations. The discharge values in m3/s associated with the conditioning percentiles 
are shown in the legend. Flood flows are generally significantly larger than the 99th percentile. 
The use of higher percentiles, however, is often not possible due to insufficient sample size.  

In Figure 41, the saw-tooth pattern in the 95th and 99th percentiles for the headwater 
locations is due to several forecasts verifying rather poorly for one or more very large 
observed flows as explained in Case 2. Because the observed flow associated with such a 
pattern is usually the maximum flow observed within the period of record, the amplitude of the 
pattern often provides a very useful indicator of sampling uncertainty at the highest 
thresholds. Figure 41 shows that, for the 95th and 99th percentiles, the mean CRPS for the 
downstream locations increases slowly with lead time, an indication of large predictability, 
whereas that for the headwater locations jumps up almost immediately at very short lead 
times, an indication of very limited predictability. Also note that, even though the 99th 
percentile flow for headwater locations is less than a fifth of that for downstream locations, the 
magnitude of the mean CRPS for headwater locations is comparable to that for downstream 
locations at very short lead times, in reflection of the very limited predictability at headwater 
locations.  

Figures 42 and 43 show, for downstream (top) and headwater (bottom) locations, the RES and 
REL components of the mean CRPS, respectively. They are based on the CR decomposition of 
the mean CRPS into REL, RES and UNC, or into REL and potential CRPS (Hersbach, 2000) (see 
also section 4.3): 

CRPS = REL – RES + UNC = REL + CRPSPOT (49) 

A smaller REL indicates more reliable ensembles (which is desirable), and a larger absolute 
value of RES means better resolution (which is also desirable). The RES component 
(= UNC – CRPSPOT) is positive if the ensemble forecast is better than the climatological 
ensemble forecast (Hersbach, 2000). The UNC component reflects climatological uncertainties 
in the observations and does not relate to forecast attributes. The CRPSPOT represents the 
mean CRPS achievable by calibrating forecast probabilities to be perfectly reliable 
(Hersbach, 2000). As with the CRPS, the smaller the CRPSPOT is, the better the forecast is.  
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Figure 41. Mean CRPS of NAEFS-forced ensemble streamflow forecasts versus lead 

time for downstream (top) and headwater (bottom) forecast points in the DRB 
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Figure 42. Same as Figure 41 but for the resolution component of the mean CRPS 

Figure 42 shows that the NAEFS-forced ensemble streamflow forecasts have positive RES out 
to multiple days into the future for downstream locations for the 95th and 99th percentiles. 
However, for headwater locations, RES quickly turns negative, thus negatively contributing to 
the mean CRPS.  

Figure 43 shows that the NAEFS-forced streamflow ensemble forecasts for downstream 
locations have similar levels of REL when conditioned on the 95th and 99th percentile observed 
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flows, but that they are significantly less reliable for headwater locations when conditioned on 
the 99th percentile flow versus the 95th percentile. The particularly unfavourable REL in 
Figure 43 at short lead times for headwater locations is due largely to significant low bias in 
the NAEFS-forced ensemble streamflow forecasts. The above observations indicate that the 
large mean CRPS for headwater locations is due to both unfavourable RES and unfavourable 
REL, the latter of which may potentially be improved by statistical post-processing with a much 
larger sample size. 

 

 
Figure 43. Same as Figure 41 but for the reliability component of the mean CRPS 
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The REL component in Equation 49 only assesses how closely in the mean sense the ensemble 
members mimic the cumulative probability distribution of the observed flows over all ranges, 
similarly to the rank histogram but accounting for ensemble width (Hersbach, 2000). Hence 
REL is a weaker test of reliability than the reliability component of the BS across a range of 
thresholds. To assess reliability in a stronger sense, one may use the reliability diagram as 
shown in Figure 44 for the NAEFS-forced ensemble streamflow forecasts at lead times of 18 
(top) and 156 (bottom) hours for downstream locations. The figure shows that the ensemble 
forecast is generally reliable at very short lead times for downstream locations, but that 
reliability is reduced at longer lead times due to high bias (see Figure 39).  

The bottom part in each panel of Figure 44 shows frequency histograms of the forecast 
exceedance probabilities associated with the respective thresholds. If the ensemble forecast is 
perfectly sharp (see Chapter 3 and Chapter 4), the histogram would show probability masses 
at 0 and 1 only. If the ensemble forecast is not very sharp, the histogram would appear shrunk 
towards the middle from all three sides (left, right and bottom). It is seen in the histograms 
that the ensemble forecast loses sharpness as the lead time increases. Compared to the longer 
lead time (bottom panel), the sample size for forecast probability of zero is larger and the 
forecast probabilities of 0.3 to 0.7 are smaller at the shorter lead time (top panel). 

Figure 45 shows the ROC curves for NAEFS-forced ensemble streamflow forecasts at a lead 
time of 156 hours for downstream (top) and headwater (bottom) locations, respectively. The 
ROC measures the ability of the forecast to discriminate between events and non-events (see 
Chapter 3 and Chapter 4). Analogously to CORR being immune to linear bias in single-valued 
forecasts, ROC is insensitive to reliability of ensemble forecasts (that is, bias in probability 
space). The ROC explicitly reflects the forecast’s ability or inability to detect events given the 
threshold of interest, such as flood stage. The ROC is hence a particularly useful measure for 
large-to-extreme events for which Type II (that is, false negative) error is important. In 
Figure 45, an event is defined for simplicity as the observed flow exceeding the threshold at 
any given time. However, any other event definition of arbitrary complexity can be used as 
long as it is possible to condition the forecast–observation pairs consistently.  

Figure 45 shows that NAEFS-forced ensemble streamflow forecasts have significantly better 
discriminatory skill for downstream locations than they do for headwater locations, and that 
the skill is more sensitive to the choice of the threshold for headwater locations than for 
downstream locations. For headwater locations, the POD is only about 0.49 even when only 
10% of the ensemble members exceed the 99th percentile flow, with a POFD of 0.05 (that is, 
the uppermost marker on the yellow line). For downstream locations, the matching POD is 
much larger at 0.95, with a POFD that is only marginally larger at 0.11, resulting in a much 
larger AUC than for headwater locations.  

For single-valued forecasts (or, equivalently, perfectly sharp probabilistic forecasts), the mean 
CRPS and ROC reduce to the MAE and a single point of (POD, POFD), respectively. They hence 
allow for comparative assessment of skill between ensemble and single-valued forecasts. 
Caution must be exercised in such a comparison, however, as probabilistic verification 
necessarily favours ensemble forecasts; because they are perfectly sharp ensemble forecasts, 
single-valued forecasts are penalized for “sticking their neck out” whereas ensemble forecasts 
are rewarded for hedging their bets. On the other hand, if the mean CRPS of the ensemble 
forecast turns out to be larger than the MAE of a comparable single-valued forecast or if the 
(POD, POFD) of the single-valued forecast is found to lie outside (that is, above or to the left) 
of the ROC curve, it indicates that the ensemble forecast system may be deficient in certain 
areas compared to the single-valued forecast system (for example, uncertainty modelling, 
forcings, model physics, initialization, calibration or postprocessing).  
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Figure 44. Reliability diagrams of NAEFS-forced ensemble streamflow forecast at 

lead times of 18 (top) and 156 (bottom) hours for downstream locations 
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Figure 45. ROC curves for the NAEFS-forced ensemble streamflow forecast at 
different thresholds for downstream (top) and headwater (bottom) locations 
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7.4 Case 4. Verification of skill in ensemble streamflow forecast for water 
supply 

Example 3 in Appendix A provides a hands-on exercise with a smaller version of this case 
using the EVS. Case 4 is adopted from Kim et al. (2018) and assesses the skill of ensemble 
streamflow forecasts generated with the HEFS (Demargne et al., 2014) for five headwater 
basins in the Upper Trinity River Basin (UTRB) in North Texas, United States. Straddling semi-
arid and humid regions to the west and east, respectively, the UTRB is a challenging area for 
streamflow forecasting due to limited predictability and large input and hydrological 
uncertainties. The HEFS uses the MEFP (Schaake et al., 2007; Wu et al., 2011; NWS, 2017a) 
and the streamflow Ensemble Postprocessor (EnsPost) (NWS, 2017b) to reduce input and 
hydrological uncertainties, respectively (see Figure 1). For national implementation of the 
HEFS, it is of great interest to assess the possible gains from the use of bias-corrected 
medium-range precipitation forecasts from the MEFP and statistical bias correction in 
streamflow simulation via EnsPost in areas of limited predictability versus climatological 
ensemble forecasting. 

Ensemble mean precipitation forecasts from the GEFSv10 (Zhou et al., 2017) were used as input 
to the MEFP to generate bias-corrected ensemble precipitation forecasts for lead times of 1 to 
15 days. Beyond Day 15, resampled climatology (Demargne et al., 2014) was used – that is, skill-
less ensemble precipitation forecasts generated with the MEFP (similar to climatological ensemble 
forecasts but based on MEFP ensemble generation). The period of record is 1985 to 2015. Even 
with the large-sample hindcast dataset, the sample size for large-to-extreme precipitation events 
is small for individual basins. To increase sample size, the forecast–observation pairs were pooled 
together for the five-basin cluster (see Kim et al., 2018 for the map).  

Figure 46 shows the CRPSSs of the HEFS streamflow ensemble forecasts for aggregation 
periods of 1, 3, 5, 7, 14 and 30 days conditional on the verifying observation exceeding the 
respective 99th percentiles. The results are stratified for wet and dry seasons, and with and 
without EnsPost. For this case, only the conditional verification results are shown to accentuate 
the variations in skill and sampling uncertainty associated with large-to-extreme events. The 
CRPSS is expressed as: 

𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆𝑆𝑆 = 1 −
𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆

𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆𝑓𝑓𝑙𝑙𝑖𝑖𝑟𝑟
 

(50) 

where 𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆 and 𝑈𝑈𝑅𝑅𝑃𝑃𝑆𝑆𝑓𝑓𝑙𝑙𝑖𝑖𝑟𝑟 denote the mean CRPS of the HEFS ensemble forecast and that of the 
resampled climatological forecast, respectively. NWS has been using climatological ensemble 
forecasting, referred to as ensemble (or “extended” when first implemented) streamflow 
prediction (ESP) (Day, 1985) for multiple decades for long-range streamflow forecasting. 
Hence, the resampled climatological ensemble forecast serves as a natural reference forecast. 

Figure 46 shows that HEFS ensemble streamflow forecasts have discernible skill out to about 
2 weeks into the future, and that EnsPost improves the skill by reducing hydrological 
uncertainty. Not surprisingly, the larger the time scale of aggregation is, the more skillful the 
forecast tends to be, an important consideration in forecast-informed operation and 
management of water supply systems in this water availability-sensitive region. 

In all cases above, sample size is often a key limiting factor for verification of large-to-extreme 
events such as floods. Sampling uncertainty may be assessed via confidence intervals. For 
some verification measures, confidence intervals may be readily calculated using analytical 
expressions under assumed parametric distributions. Albeit computationally significantly more 
expensive, bootstrapping (see Chapter 2) may be used to estimate confidence intervals for any 
verification measure without distributional assumptions. Figure 47 shows the 90% (between 
5% and 95%) confidence intervals estimated via Monte Carlo bootstrapping for the CRPSS for 
streamflow forecast for SGET2 (Clear Creek near Sanger, Texas, United States), one of the five 
forecast points used in Case 4. The figure indicates that the improvement due to EnsPost is 
statistically significant at a significance level of 0.10 except at very short lead times where 



93 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 

hydrological uncertainty is controlled largely by the memory of the ICs. The raw and 
postprocessed streamflow hindcasts are very likely to be significantly correlated with each 
other. It is hence very likely that the differences in the CRPSS between the two hindcasts are 
statistically more significant than the confidence intervals in the figure may suggest. 

 
Figure 46. CRPSSs of the MEFP–GEFS streamflow ensemble forecasts with and 

without EnsPost (denoted as EP in the legend) for all aggregation periods for the wet 
and dry seasons conditional on the verifying observation exceeding 

the 99th percentile (from Kim et al., 2018) 
Source: Reproduced with the permission of the American Meteorological Society 

 
Figure 47. The 90% (between 5% and 95%) Monte Carlo confidence intervals for 

CRPSSs of daily streamflow hindcasts for SGET2 conditional on the verifying 
observation exceeding the 99th percentile (from Kim et al., 2018) 

Source: Reproduced with the permission of the American Meteorological Society 
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7.5 Case 5: Diagnostic verification in (near) real time 

Various hydrological forecasting systems include routines or subsystems for diagnostic 
verification in (near) real time. These measures are often computed or produced on a fixed 
schedule (for example, once a day or once a week). In the present section, this is referred to 
as operational verification. 

Reasons for such operational verification include: 

• Providing immediate feedback (as opposed to delayed feedback) to operational 
forecasters. 

• Tracking of forecast quality for early identification of any issues. 

• Enabling quick post-event analyses. 

This section discusses three operational verification systems: the Système de Prévision 
Hydrologique (SPH) at the Québec Ministry of the Environment, Canada, the Hydrological 
Forecasting System (HyFS) at the Australian Bureau of Meteorology, and the Rijkswaterstaat 
Operational System (RWsOS) at the Water Management Centre of the Netherlands (WMCN). 
The purpose of this case study is to showcase various design considerations. 

All systems are based on the Delft-FEWS forecast production system, and some metrics are 
computed using the EVS, which is used as a module within Delft-FEWS.  

7.5.1 Système de Prévision Hydrologique (SPH) 

The SPH is a Delft-FEWS-based hydrological forecasting system used by the Québéc Ministry of 
the Environment1 to forecast streamflow for hundreds of locations in the province of Québec in 
Canada. Forecasts are used to inform other government agencies about hydrological conditions 
that may affect public safety. The system produces hydrological forecasts based on various 
meteorological forecast products which are referred to as forecast scenarios. These scenarios 
include blends of regional and global NWP products, including ensemble products: the National 
Centers for Environmental Prediction (NCEP) North American Mesoscale Forecast System 
(NAM) blended with the NCEP Global Forecast System (GFS), the Environment and Climate 
Change Canada (ECCC) Regional Deterministic Prediction System (RDPS) blended with the 
ECCC Global Deterministic Prediction System (GDPS), the NCEP Global Ensemble Forecast 
System (GEFS) and the ECCC Global Ensemble Prediction System (GEPS). A forecaster may 
modify these automatically produced forecasts prior to elevating the status of any of the 
scenarios to “official forecast”. 

The verification module within the SPH was developed to inform operational forecasters on the 
quality of recent streamflow forecasts and meteorological forecast scenarios. It includes a 
module that computes the relative mean error (RME) of streamflow forecasts and the mean 
error (ME) of precipitation and temperature forecasts (see Chapter 4 for definitions of RME and 
ME). For scenarios that comprise ensemble forecasts, the RME and ME of the ensemble means 
are computed. Computation is done as soon as verifying observations become available to the 
system. The computed metrics can be consulted within the same displays that forecasters 
typically use to produce the forecasts (that is, within the actual forecasting system). An 
example of the verification display is shown in Figure 47. The metric values are colour-coded 
and are presented as a function of the analysis time and forecast lead time.  

 
1 Its full name currently is the Ministry of the Environment, the Fight Against Climate Change, Wildlife and 
Parks. 
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Figure 48. Example of the verification display used within the SPH. The display 

relates to a single location and its upstream basin. From top to bottom, the plots 
show the RME of the streamflow forecasts and the ME of precipitation and 

temperature forecasts. Within the plots, rows are for different lead times (not shown 
in the plot itself) and columns are for the analysis (initialization) times. 

A main goal of the verification system is to provide operational forecasters with immediate 
feedback on the performance of recent forecasts. Such a feedback loop will increase the value 
added by human forecasters and hence improve forecast skill. The assumption here is that 
immediate feedback is better than delayed feedback. 

Initial findings from the use of the system, however, indicate that forecasters find it difficult to 
use the verification metrics in their daily forecasting tasks. The quality of NWP forecasts, as 
expressed in the value of the ME, is not necessarily persistent over time, and hence the 
predictive value of recent verification metrics may be limited. Whereas human forecasters 
clearly add value to quantitative precipitation forecasts (QPFs) (Reynolds, 2003), it is not yet 
clear how immediate feedback may translate into improved forecast skill. Reynolds (2003) 
points out that, for human forecasters to add significant skill to QPFs, understanding of the 
physical processes and of the strengths and weaknesses of the NWP guidance is necessary. 

7.5.2 Bureau of Meteorology’s Performance Analysis Tool 

The Hydrological Forecasting System or HyFS is the hydrological forecasting system used by 
the Australian Bureau of Meteorology. Service level agreements with emergency management 
partners for each Australian state and territory specify performance targets. Performance 
analysis compares flood watches, warnings and forecasts against key targets defined for over 
500 forecast locations across Australia. 

Performance is measured in three aspects: timeliness, warning lead time and forecast 
accuracy. The timeliness performance aspect aims to issue 97% of flood watches and flood 
warnings to customers on time (that is, before or at the stated “next issue time” in a previous 
watch or warning). The warning lead time target specifies that 70% of the trigger height 
exceedances for which a target lead time was provided to customers as per service level 
agreement are communicated within that target lead time. The forecast accuracy target 
specifies that 70% of the peak predictions provided to customers are within a specified range 
(typically ±0.3 m), as per service level specifications. 
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The flood forecasts and warnings issued by the Bureau are also available in machine readable 
.xml format. The .xml files containing the forecasts and warnings are imported into HyFS. 
HyFS runs a monthly workflow that calculates the performance metrics. 

Within HyFS, various displays are available for displaying information related to the 
Performance Analysis Tool. The warnings display (Figure 49) allows the user to interrogate the 
system regarding each of the warnings issued and to undertake quality control. This includes 
exploring the forecasts underlying the warnings (Figure 50 and Figure 51). Summary data are 
available at the level of region, basin and location. From these plots (Figure 52 through 
Figure 54), it can be immediately determined whether the targets have been reached or not.  

 
Figure 49. the HyFS warnings display 
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Figure 50. Forecasts underlying a specific warning, as shown in the HyFS warnings 

display 
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Figure 51. Detailed overview in HyFSof observed water level at a location, as well as 
the forecasts that were issued for that location. The latter are indicated by horizontal 

boxes that indicate a time interval. 

 
Figure 52. Timeliness display within HyFS 
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Figure 53. Lead time display within HyFS 
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Figure 54. Forecast accuracy display within HyFS 

Performance metrics, associated peaks and other information can be exported from HyFS. This 
facilitates detailed, offline analyses. An example of such an analysis is shown in Figure 55. 
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Figure 55. Peak accuracy, 16 June through 15 July 2022, by river basin. This map 
was produced using data exported from the Performance Analysis Tool in HyFS. 

The performance metrics are used in monthly performance reports to provide feedback to 
forecasting teams. These reports contain a deeper analysis of the performance results 
nationally, while also reporting on forecasts for specific locations. They aim to create 
awareness of areas where the Bureau needs to improve its operations and allow operational 
forecasters to share their lessons learned with others. Also, they provide an opportunity to 
assess and celebrate improvements in the Bureau’s service delivery. The Performance Analysis 
Tool has reduced the effort required to produce the performance reports, which allows for 
producing performance analyses more readily during (rather than after) events. 

7.5.3  Rijkswaterstaat family of operational forecasting systems (RWsOS) 

Rijkswaterstaat is an agency of the Government of the Kingdom of the Netherlands responsible 
for flood forecasting on water bodies that are under the purview of the central Government. 
Rijkswaterstaat operates hydrological forecasting systems for several types of water bodies, 
including the North Sea and the rivers Meuse and Rhine. 

A verification system is being set up for the RWsOS family of forecasting systems. At the time 
of writing, the initial version has been in use for over a year. The verification system aims to 
enable early detection of any issues in the forecasting system and to provide the ability to give 
immediate feedback to operational forecasters. Issues include “drift”, where model 
performance slowly deteriorates over time, and deterioration of the quality of initial model 
states. 

The forecaster feedback mechanism will be developed in the coming years. This development 
will likely include research into how the feedback mechanism can lead to increased forecast 
skill, and training for operational forecasters on how to achieve that. 

Currently, the verification tool is being expanded to include verification metrics computed by 
the Ensemble Verification System (EVS). The EVS will be included as a module within the 
Delft-FEWS based RWsOS products. The RWsOS system is used to source data required for 
verification. These data are exported in the Delft-FEWS Published Interface format, which can 
be readily ingested by the EVS. An EVS-Delft-FEWS “adapter” prepares the EVS project file 
which is required by the EVS to run the computations. Once these have been completed, a 
“post-adapter” casts the EVS outputs into a format that can be ingested by the archive which 
is linked to Delft-FEWS. Information is then available for visualization and for further 
dissemination to a web portal (the “verification dashboard”) which was developed for exploring 
the verification data.  
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Figure 56. Screenshot of the Rijkswaterstaat verification dashboard 

7.6 Case 6: Comparative verification of ensemble forecasts for ephemeral 
streams 

Verification of ensemble forecasts for ephemeral streams tends to be unusual in the wider 
literature. Example 7 in Appendix A is a real-world example of an attempt to verify ensemble 
streamflow forecasts of an ephemeral river and provides methods and code to compare two 
ensemble streamflow forecasting systems, with selected forecasts and data from the study by 
Bennett et al. (2021). The full set of forecasts and observed data are provided by Bennett and 
Robertson (2021). 

The forecasts are generated by forcing a calibrated and initialized rainfall-runoff model with 
“perfect” rainfall forecasts (observed rainfall), and uncertainty is generated with two different 
versions of the Error Reduction and Representation in Stages (ERRIS) error model (Li 
et al., 2017). ERRIS transforms, bias-corrects and updates forecast errors, and then 
propagates uncertainty through a technique termed “stochastic updating”. ERRIS is expressly 
designed to handle ephemeral streams with zero flow. 

Example 7 in Appendix A compares a “new” version of ERRIS to an “old” version. The old 
ERRIS uses a static bias-correction and applies a restriction (Li et al., 2015) to the 
autoregressive updating during parameter inference and forecast generation. This restriction 
attempts to avoid unrealistically large corrections. The new ERRIS uses a moving average bias-
correction and does not apply the restriction to autoregressive updating when parameters are 
inferred but does apply the restriction in forecast generation. For detailed description of the 
ERRIS models used to generate these forecasts see Bennett et al. (2021). 

Typically, when comparing forecasting methods, the choice of the method depends on the 
purpose of the system. In this case study, the old method produces slightly more accurate and 
reliable forecasts at longer lead times (>~150 hours) but tends to be positively biased. The 
new method is more accurate and reliable at shorter lead times (<~150 hours) and is largely 
unbiased. At longer lead times the new method becomes overconfident, reducing reliability. 

The use of pseudo-PIT values is extremely useful in assessing reliability of forecasts for 
ephemeral streams as it allows us to check the uniformity of PIT values and associated 
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summary methods (α-index, β-score, β-bias) (see Example 7 in Appendix A). It is noted, 
however, that when there are a very large number of zero flows observed, the uniformity of 
PIT will largely rely on pseudo-PIT values. This can be difficult to interpret: in such cases, 
reliability essentially comes down to the probability of zero drawn from each ensemble 
forecast. 

7.7 Key points 

• The case studies demonstrate how relatively simple verification tasks may aid critical 
operational and strategic decisions for improving forecast quality. 

• The case studies show how verification functionalities may be integrated with real-time 
forecast or other operational systems to very quickly provide the forecasters, system 
operators or managers with forecast quality information specific to recent events or 
periods as desired. 

• Verification of streamflow forecasts tends to make use of a few metrics, scores and 
diagrams out of a large number available. They comprise representative accuracy metrics 
and attribute-specific metrics that are largely independent of one another in information 
content. 

• For single-valued (deterministic) streamflow forecasts, the core metrics tend to include 
the RMSE, ME and correlation. For probabilistic streamflow forecasts, the core metrics 
tend to include mean CRPS, reliability diagram (if sample size is insufficient, rank 
histogram or PIT diagram), forecast frequency histogram and ROC curve. 

• With the availability of software tools for verification, it is easy to generate numerous 
verification metrics, scores and diagrams. Unless purposefully sought, however, the 
verification results may not translate into actionable information or offer insight by 
themselves. It is hence important to develop a verification plan even if it may have to be 
revised. For example, one may be able to show that forecast A has a higher skill score 
than forecast B, but it may be difficult to assess the practical value of adopting forecast B 
in place of, or in addition to, forecast A without assessing the marginal value in physical-
world terms, even only very approximately (see Murphy and Ehrendorfer (1987) and 
Laugesen et al. (2023)). 

• The quality of streamflow forecasts tends to be flow regime-dependent. For example, 
forecast A may be better than forecast B when all ranges of flow are considered, but in 
high flow conditions, forecast B may be superior. To assess such flow magnitude-
dependent variations of forecast quality, conditional verification should also be used as 
necessary. Because high-flow events are generally more impactful, such additional 
verification information, beyond the “unconditional” verification information, is very 
important for many users of the forecast information.  

• Planning is particularly important for verification of large-to-extreme events for which a 
large sample is generally necessary. If a suitable dataset does not exist, reforecasting 
may be necessary, which requires substantial organizational resources and commitment. 
Note that, even if large-sample reforecasts of hydrometeorological variables are already 
available, large-sample hydrological hindcasting for many locations requires significant 
human and computational resources. 
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CHAPTER 8. SUMMARY 

This chapter compiles the key points from Chapters 2 through 7. Because they appear in the 
general order of initiating hydrological verification, this chapter may be read as the overall 
guidance without the details. As no two rivers are the same and no two users are the same, no 
two streamflow verification tasks are likely to be the same. To address the specific verification 
objectives and needs effectively and time-efficiently, it is important to gain understanding of 
and familiarity with the fundamental concepts, the available metrics, scores, diagrams and 
tools, and their limitations. 

8.1 Chapter 2: Why verify? 

• The purpose of hydrological verification is to increase the value and utility of hydrological 
forecast products and services by supporting objective and systematic improvement of 
forecast quality and the decisions of the users of the forecast information.  

• Hydrological verification broadly utilizes the theory and practices developed by the 
meteorological community, which was early to recognize the value of verification in 
improving weather forecasting.  

• Hydrological forecasts are subject to input and hydrological uncertainties. The former are 
associated with errors in the hydrometeorological forecasts used as input to hydrological 
models. The latter are associated with errors in the rest of the hydrological forecasting 
process. Verification supports uncertainty decomposition to guide cost-effective 
improvement of forecast input, systems and processes. 

• Type I, or false positive, and type II, or false negative, errors are competing attributes of 
a forecast. Verification informs the trade-off between the two types of errors and 
supports decision-specific assessment of the utility of a forecast and the relative utility of 
competing forecasts.  

• Movement and storage of water is heavily modulated by the physiography of the 
individual catchments, river basins, channels and water bodies. Hence, it is generally not 
possible to determine streamflow at other locations based on observations at a gauged 
location. For this reason, hydrological forecasts should be verified as location-specifically 
as possible to the extent data availability allows. Note that an “accurate” precipitation 
forecast at a regional scale to a meteorologist can very easily be a complete miss to a 
hydrologist or a water resources engineer particular for small basins if precipitation falls 
outside of the boundary of the catchment of interest. 

• Prediction of large-to-extreme events is very often the most important service of 
operational hydrological forecasting. Such events occur infrequently, and hence the 
sample size tends to be small. To increase sample size, some form of trading of space for 
time or regionalization is usually necessary at the expense of location specificity. 

8.2 Chapter 3: Attributes of forecast quality 

• Forecast quality is assessed by comparing forecasts with verifying observations (or high-
quality estimates) under the assumption that they are realizations of IID random 
variables. The relationship between the two is then described wholly by their joint 
distribution. Multiple attributes of forecast quality are necessary to describe the essence 
of this distribution.  

• Accuracy describes the overall level of agreement between the forecasts and their 
verifying observations and hence is most representative of forecast quality. Measures of 
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accuracy, such as the RMSE and mean CRPS for single-valued and probabilistic forecasts, 
respectively, reflect multiple attributes that are largely independent of one another in 
information content, such as correlation and biases in the mean and standard deviation 
in the case of the RMSE.  

• Skill describes the relative accuracy of the subject forecast in comparison with a 
reference forecast or benchmark of choice. The reference forecast may be climatology, 
persistence or a forecast produced from a baseline forecast system. Skill scores calculate 
percent improvement in the accuracy metrics of choice by the subject forecast over the 
reference forecast. The Nash–Sutcliffe efficiency, which is very widely used in calibration 
of hydrological models, is an example of the MSE skill score.  

• Several attributes of probabilistic forecasts arise from decomposing the joint probability 
distribution of the forecast and the verifying observation into the conditional and 
marginal distributions.   

• In probabilistic verification, reliability (or type I conditional bias), resolution and 
uncertainty arise from conditioning on the forecast via the calibration–refinement (CR) 
decomposition, whereas type II conditional bias, discrimination and sharpness arise from 
conditioning on the observation via the likelihood–base rate (LBR) decomposition.  

• Though verification and prediction are different, it is helpful to relate the CR 
decomposition with forward (that is, regular) linear regression and the LBR 
decomposition with reverse regression (that is, regression with the predictor and the 
predictand interchanged). It is also helpful to consider the CR and LBR decompositions as 
characterizing forecast quality from the perspective of reducing false alarms (crying wolf 
when there are none) and misses (failing to see the wolf), respectively, given the same 
absolute accuracy in the forecast.  

• Reliability, resolution, type II conditional bias and discrimination are competing attributes 
given a particular absolute accuracy in the forecast. Specifically, reducing type I and type 
II conditional biases is a zero-sum game unless absolute accuracy is improved. Hence, 
assessment of individual forecast attributes is critical to assessing the trade-offs, guiding 
improvements in forecast systems and processes, and improving application-specific 
decisions based on the user’s risk perception and tolerance.  

• In the CR decomposition, uncertainty reflects predictability of the variable being verified. 
In the LBR decomposition, sharpness measures the forecast’s ability to “stick its neck 
out”, correctly or incorrectly. Though these two attributes do not pertain to the joint 
relationship between forecast and observation, they make up the overall accuracy and 
hence should be assessed. When assessing uncertainty, it is a good practice to consider 
skewness (asymmetry in distribution) and heteroscedasticity (nonuniformity in 
variability) to aid possible stratification, pooling or conditioning of the forecast–
observation pairs.  

• The above points regarding probabilistic verification mean that, between reliability and 
resolution and between type II conditional bias and discrimination, it is generally 
necessary to assess only one of the two attributes in each pair. Commonly, the choices 
are reliability and discrimination. 
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8.3 Chapter 4: Commonly used verification metrics 

• Multiple metrics are available to assess each of the widely measured attributes for 
different types of forecasts. The MSE (or RMSE), the 2 × 2 contingency table, the BS and 
the mean CRPS are particularly important, as they collectively contain almost all other 
metrics or their building blocks. It is hence important to understand what each of the 
above four metrics comprise, so that one may utilize the entire suite of metrics, scores 
and diagrams effectively.  

• This publication describes most of the widely used verification metrics, scores and 
diagrams. Some of the metrics derived from the 2 × 2 contingency table are better 
suited for verification of flash flood forecasts than streamflow forecasts. All others 
described in this chapter apply to the verification of streamflow forecasts. Most of them 
are available in verification software tools such as the EVS.  

• Several diagrams and histograms are used to assess the attributes associated with the 
BS decomposition for probabilistic forecasts. The most widely used include the reliability 
diagram (a strong test of reliability), the rank histogram (a weak test of reliability), the 
ROC curve for discrimination and the forecast frequency histogram for sharpness. 
Depending on the application, the PIT diagram (see Case 6 in Chapter 7) and 
discrimination diagram may be preferred to the rank histogram and the ROC curve, 
respectively.  

• Streamflow and precipitation typically exhibit skewness (asymmetry in distribution) and 
heteroscedasticity (nonuniformity in variability), which are often not explicitly assessed in 
verification. For streamflow, skewness and heteroscedasticity reflect predictability and 
flow regime-dependent variability, respectively, and hence provide very useful guidance 
on stratification, pooling, or conditioning of the forecast–observation pairs.   

• Sampling uncertainty is a recurring challenge in hydrological verification, particularly for 
conditional verification of probabilistic forecasts for large-to-extreme events. It is a good 
practice to assess sampling uncertainty via bootstrapping early in the verification task for 
sample size-challenged cases. One may then assess how sampling uncertainty may be 
reduced by relaxing the conditioning or trading space for time via data pooling or 
regionalization.  

• Conditional verification results, if produced, should be communicated together with the 
“parent” unconditional verification results to avoid misinterpretation or misuse. For 
example, using verification information for high flows as being representative of all flows 
will inevitably lead to poor decisions most of the time. 

8.4 Chapter 5: Preparatory steps and logistical considerations 

• Several steps are generally necessary to produce useful verification results. Each step 
involves several choices and decisions which, if not well thought out in advance, may 
lead to avoidable trials and errors.   

• The high-level steps include: defining the verification objectives, determining the 
audience, selecting verification tools, collecting data, preparing data (including pairing), 
and computing verification statistics.   

• The verification process may vary greatly depending on the verification task. It is hence 
very important to clearly define the verification objectives before starting.  

• The verification audience determines how verification information may be presented. 
Possible audiences include forecast users, decision support staff, forecasters, forecasting 
system developers and administrators.  
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• Verification is generally data intensive and hence software tools are almost always used. 
Care should be taken to select a tool or tools that will meet the verification objectives 
and fit the resources available to the organization and to those who will use them. In 
addition, the tools should be supported, maintained and updated well into the future.  

• The data required for verification may be readily available or may have to be produced 
through hindcasting (that is, reforecasting), which has potentially significant resource 
implications.  

• The collected or generated data may have to be cast into a specific format for ingestion 
by the verification tool. Forecasts and observations must be paired for verification. 
Depending on the verification task, stratification, subsampling or conditioning of the full 
dataset may be necessary.  

• Once the forecasts and observations are paired and subsampled as necessary, 
verification metrics may be computed. Several verification measures are expressed as 
diagrams with standardized layouts. Often, the verification task requires uncertainty 
bounds to be computed. 

8.5 Chapter 6: Visualization of verification information 

• Verification information may include raw data, technical diagrams, summary metrics and 
metadata.  

• Verification information generally includes a large amount of metadata.  

• Verification can yield a large number of verification statistics. These cannot all be shown 
in a single plot or table, and hence accompanying metadata will have to identify the 
“dimensions” that are not explicitly communicated in the plot or table. 

8.6 Chapter 7: Case studies 

• The case studies demonstrate how relatively simple verification tasks may aid critical 
operational and strategic decisions for improving forecast quality.  

• The case studies show how verification functionalities may be integrated with real-time 
forecast or other operational systems to very quickly provide the forecasters, system 
operators or managers with forecast quality information specific to recent events or 
periods as desired.  

• Verification of streamflow forecasts tends to make use of a few metrics, scores and 
diagrams out of a large number available. They comprise representative accuracy metrics 
and attribute-specific metrics that are largely independent of one another in information 
content.  

• For single-valued (deterministic) streamflow forecasts, the core metrics tend to include 
the RMSE, ME and correlation. For probabilistic streamflow forecasts, the core metrics 
tend to include mean CRPS, reliability diagram (if sample size is insufficient, rank 
histogram or PIT diagram), forecast frequency histogram and ROC curve.  

• With the availability of software tools for verification, it is easy to generate numerous 
verification metrics, scores and diagrams. Unless purposefully sought, however, the 
verification results may not translate into actionable information or offer insight by 
themselves. It is hence important to develop a verification plan even if it may have to be 
revised. For example, one may be able to show that forecast A has a higher skill score 
than forecast B, but it may be difficult to assess the practical value of adopting forecast B 
in place of, or in addition to, forecast A without assessing the marginal value in physical-
world terms, even only very approximately.  
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• The quality of streamflow forecasts tends to be flow regime-dependent. For example, 
forecast A may be better than forecast B when all ranges of flow are considered, but in 
high flow conditions, forecast B may be superior. To assess such flow magnitude-
dependent variations of forecast quality, conditional verification should also be used as 
necessary. Because high-flow events are generally more impactful, such additional 
verification information, beyond the “unconditional” verification information, is very 
important for many users of the forecast information.   

• Planning is particularly important for verification of large-to-extreme events for which a 
large sample is generally necessary. If a suitable dataset does not exist, reforecasting 
may be necessary, which requires substantial organizational resources and commitment. 
Note that, even if large-sample reforecasts of hydrometeorological variables are already 
available, large-sample hydrological hindcasting for many locations requires significant 
human and computational resources.  

Hydrological verification is still in its early days. As evidenced by several examples and case 
studies presented in this document, there are limits to the applicability of the current theory 
and practices. For example, verification of time-to-peak forecast is not addressed in this 
document despite its importance. Whereas one might be able to carry out probabilistic 
verification of ensemble time-to-peak forecast derived from ensemble streamflow forecast, 
such an attempt decouples phase from amplitude in a hydrograph, yielding verification results 
that are not amenable to hydrological contextualization. Such verification information is not 
likely to provide the producers of the forecast with tangible clues or insight into improving 
forecast quality or the users of the forecast with additional skill for improved decision-making. 
In this regard, both the research and the operational communities have much to contribute to 
the advancement of the science and practice of hydrological verification. 
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APPENDIX A. HANDS-ON EXAMPLES OF FORECAST VERIFICATION  

This appendix describes various examples of verification of streamflow forecasts. The examples 
use the Ensemble Verification System (EVS) (Brown et al., 2010), the R verification package 
and the Python-based verif library. 

The examples are meant to provide possible templates for a range of verification tasks (see 
Chapter 7) one may encounter when embarking on hydrological verification. Though unlikely 
within the foreseeable future, the coding examples may become outdated at some point due to 
upgrades of the underlying software. The expectation is that the hands-on examples will have 
served their useful purpose by then and new examples of hydrological verification will emerge 
that leverage the latest advances in science and technology. 

A.1 Setting up the Ensemble Verification System (EVS) for Examples 1–3 

The EVS package version 5.10 is available at https://sourceforge.net/projects/ensemble-
verification-system/. For installation and start-up on Microsoft Windows or Linux, go to page 9 
of the EVS Manual (included in the package) and follow the instructions. The files necessary for 
the examples are available at https://wmostorage.blob.core.windows.net/wmo-public/hydro-
forecast-verification-guidelines/A1-3_EVS_example/A1-3_EVS_example.zip (Figure 57). 

 
Figure 57. Files to be downloaded for Examples 1 through 3 

In Figure 57, “New” happens to be the name of the river in Example 1 and has no literal 
significance. Once all eight files are downloaded, unzip them. This should result in the list of 
folders shown in Figure 58. 

 
Figure 58. Folders for Examples 1 through 3 once the downloaded files are unzipped 

https://sourceforge.net/projects/ensemble-verification-system/
https://sourceforge.net/projects/ensemble-verification-system/
https://wmostorage.blob.core.windows.net/wmo-public/hydro-forecast-verification-guidelines/A1-3_EVS_example/A1-3_EVS_example.zip
https://wmostorage.blob.core.windows.net/wmo-public/hydro-forecast-verification-guidelines/A1-3_EVS_example/A1-3_EVS_example.zip
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If the user does not have 7-Zip, which is a free, open-source file archiver, it should be 
downloaded and installed from https://sourceforge.net/projects/sevenzip/. Create a new folder 
named UTrinity and move the four folders MEFP_Ens_Post_SQIN, MEFP_SQIN, QME and 
RClim_SQIN into it, which should result in the list of folders shown in Figure 59. 

 
Figure 59. High-level folders for conducting verification of streamflow forecasts 

using the EVS for Examples 1 through 3 

Lastly, unzip all files in the folders Delaware and UTrinity. In the examples below, it is 
assumed that the above folders are located under E:\verification\. The user must modify all 
occurrences of the above path in the EVS project files and in this appendix to run the 
EVS and navigate correctly. 

The New folder contains all forecasts and observations for Case 1 in Chapter 7. The Delaware 
and UTrinity folders contain small subsets of the forecasts and observations for Cases 3 and 4 
in Chapter 7, respectively. The EVS_project_files folder contains all EVS project files for the 
three examples. The EVS_output folder is initially empty and is to contain all output files from 
the EVS runs. The descriptions below assume that the user has at least scanned through the 
EVS Manual for general understanding of the software structure and the overall flow of the 
verification operation. 

A.2 Example 1 – Verification of single-valued streamflow forecast with 
uncertainty decomposition 

Navigate to E:\verification\EVS_project_files\New and double-click on 
GEFSv12_ens_mean_SQIN. The first part of the project file name, GEFSv12_ens_mean, refers 
to the forcing used (that is, ensemble mean precipitation forecast from GEFSv12). The second 
part of the project file name, SQIN, is United States National Weather Service (NWS) parlance 
for simulated (S) instantaneous (IN) discharge (Q), in which “simulated” means model-
generated. The project file name hence indicates that this verification is for GEFSv12 ensemble 
mean-forced streamflow forecast.  

Once the EVS is successfully launched, the graphical user interface should show the following 
three verification units (VU) in subpanel 1. Add verification unit(s): 

1. GAXV2.GEFSv12_ens_mean_fcst_flow (for total uncertainty in Figure 35) 

2. GAXV2.GEFSv12_ens_mean_sim_flow_with_DA (for hydrological uncertainty without the IC 
uncertainty in Figure 35) 

3. GAXV2.GEFSv12_ens_mean_sim_flow_without_DA (for hydrological uncertainty in 
Figure 35) 

For each VU, the locations of the forecast and observed data sources may be found under the 
subpanel 2b. Set input data sources. The location of the output files may be found under the 
subpanel 2d. Set path for outputs. As noted above, it is important that the user modify the 
:E\verification part of the paths for all three folders (forecast, observation and output) to 
match the actual locations of the folders on the user’s computer. 

https://sourceforge.net/projects/sevenzip/
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Figure 60. EVS-generated RMSE result for GAXV2 (New River at Galax, Virginia, 

United States) 

Click on the Next button in the lower-right corner of the Verification panel. In the Verification 
metrics to compute panel, verify that Sample size, Correlation coefficient, Mean error and Root 
mean square error are checked. With these metrics calculated, one may construct the MSE 
decomposition result shown in Figure 36 in Chapter 7. To proceed, click on the Run button in 
the lower-left corner of the panel.  

Once the above run is complete, the user may navigate to 
E:\verification\EVS_output\New\GEFSv12_ens_mean_SQIN\GAXV2 and verify that two XML 
files ending with pairs_raw and pairs_cond have been generated (see page 35 of the EVS 
Manual for explanation). The two files are used to calculate the verification statistics. On the 
Verification panel, click on the Next button in the lower-right corner for the Aggregation panel. 
Example 1 involves only a single forecast point, and hence aggregation does not apply. Click 
on the Next button in the lower-right corner for the Output panel. 

On the Output panel, click on GAXV2.GEFSv12_ens_mean_fcst_flow or on VERIFICATION in 
the same row in subpanel 1a. Select unit(s) with results to list all possible products in 
subpanel 1b. Choose products for selected unit. Right-click anywhere within the rectangular 
area of the list of products and choose the option Select all times and products, which will 
check all boxes. Click on any one of the products to display all lead times in 
subpanel 1c. Choose lead times for selected products and verify that all boxes are checked. 
Click on the Run button in the lower-left corner of the panel to generate the products. 

To see all verification products generated, go back to 
E:\verification\EVS_output\New\GEFSv12_ens_mean_SQIN\GAXV2, where all PNG and XML 
files will appear. The largest two files, ending with pairs_raw and pairs_cond, are generated 
from the run made on the Verification panel. All other files are generated from the run made 
on the Output panel. Verify that the RMSE plot, 
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GAXV2.GEFSv12_ens_mean_fcst_flow.Root_mean_square_error.png, is identical to Figure 60. 
In the figure, the All data curve is the same as the total uncertainty curve in Figure 35 in 
Chapter 7 except that the latter also shows the RMSE at lead time of 0, (that is, the analysis 
error). The user may now repeat the two remaining VUs on subpanel 1. Add verification unit(s) 
to generate the other two RMSE results in Figure 35. 

Many options and functions are available in each subpanel in the Verification panel under the 
More button (the user may have to scroll down to see the button). The user is encouraged to 
explore different options and functionalities available in the EVS using the above example in 
consultation with the EVS Manual. 

A.3 Example 2 – Verification of ensemble streamflow forecast with 
aggregation of multiple forecast points 

In this example, the user performs a reduced version of Case 3 in Chapter 7 in which only six 
forecast points are used (versus 26 in Case 3). The three downstream locations are BVDN4 
(Delaware River at Belvidere, New Jersey, United States), MTMP1 (Delaware River at 
Matamoras/Port Jervis, New Jersey, United States) and WNTP1 (Lehigh River at Walnutport, 
Pennsylvania, United States), and the three headwater locations are HWYP1 (Lackawaxen 
River at Hawley, Pennsylvania, United States), WALN6 (West Branch Delaware River at Walton, 
New York, United States) and WHTP1 (Lehigh River at White Haven, Pennsylvania, United 
States).  

To view the XML files for the individual ensemble forecasts, navigate to 
E:\verification\Delaware\NAEFS_SQIN, where the six folders for the six forecast points are 
located, each containing about three years’ worth of NAEFS-forced streamflow ensemble 
forecasts. Go to BVDN4_2018-2020 to list the individual files. Using a text editor or a viewer, 
open any one of the files. Verify that the headers at the top and bottom of the file show 
ensemblememberid of 0 and 41, respectively, indicating that this is a 42-member ensemble 
forecast. Make a note of locationid of BVDN4DEL and parameterid of QINE in the header. In 
the above, “DEL” denotes the Delaware River and “E” in QINE signifies that the instantaneous 
streamflow is estimated (that is, model-generated) rather than observed. The two identifiers, 
locationid and parameterid, will be recalled when the project file is described below. 

There are two project files for Example 2, one for the downstream locations, 
E:\verification\EVS_project_files\Delaware\NAEFS_SQIN_Downstream, and the other for the 
headwater locations, E:\verification\EVS_project_files\Delaware\NAEFS_SQIN_Headwater. 
Double-click on NAEFS_SQIN_Downstream to launch the EVS. In subpanel 1. Add verification 
unit(s), the user will find three VUs for the three downstream locations. As in Example 1, the 
user must edit the paths for Forecast data source and Observed data source in 
subpanel 2b. Set input data sources and Folder for output statistics in subpanel 2d. Set path 
for outputs to match the actual folder locations on the user’s computer. 

If the user is adopting the EVS project files used for these examples as templates for 
verification of the user’s own forecast, it is very important that locationid and parameterid in 
the header of the user’s XML files match Forecast data location id and Forecast data variable 
id, respectively, in the Other Options tabbed pane in the Input data options subpanel, which is 
accessed through the More button in subpanel 2b. Set input data sources in the Verification 
panel. If either of the identifiers does not match, the EVS will throw an error which can be 
difficult to trace. 

To run the VU MTMP1.NAEFS_fcst_flow, click on the Next button in the lower-right corner of 
the Verification panel to get to subpanel 3a. Select metrics to compute. Currently, only sample 
size, mean CRPS, ROC and reliability diagram are checked to reflect the metrics shown in 
Case 3 in Chapter 8. The user is encouraged to check or uncheck any metrics listed on 
subpanel 3a. Select metrics to compute. To select all or none, right-click anywhere on the 
subpanel and click on the select all/none pop-up button.  
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Recall in Case 3 in Chapter 7 that CR decomposition was used for mean CRPS. To verify that 
this decomposition is included in the current VU, click on the element Mean continuous ranked 
probability score or Ensemble distribution in subpanel 3a. Select metrics to compute. Then, in 
subpanel 3c. Edit basic parameters of selected metric ‘Mean continuous ranked probability 
score’, scroll down and click on the More button. On the Main options tabbed pane, verify that 
Calibration-Refinement (CR) is chosen for the Select score decomposition: option. Unlike the 
BS, which also allows for likelihood–base rate decomposition, mean CRPS allows only for CR 
decomposition. Note also in subpanel 3c. Edit basic parameters of selected metric ‘Mean 
continuous ranked probability score’ that the highest threshold specified is 0.90 (versus 0.95 in 
Case 3 in Chapter 7), due to the much smaller sample size available from only three locations. 
Once the verification metrics are selected, click on the Run button to generate the two paired 
files in E:\verification\EVS_output\Delaware\NAEFS_SQIN\MTMP1.  

Repeat the above steps for the other two downstream locations, WNTP1 and BVDN4. Or, if the 
user is certain that all three VUs are set up correctly and consistent, click the Run all button 
next to the Run button in the lower-left corner of the Verification panel to generate the two 
paired files for each location in E:\verification\EVS_output\Delaware\NAEFS_SQIN\*****, 
where the asterisks denote the 5-character location identifier. 

Once the above run is complete, click on the Next button for the Aggregation panel, which 
should list the three VUs for the three locations in subpanel 2b. Select verification units to 
include in aggregation. As noted in Case 3 in Chapter 7, the pairs for the three locations are to 
be pooled together for aggregated verification. To confirm this, click on the More button in this 
subpanel, verify that Pool pairs (will ignore weight parameters) is checked, and click on OK to 
close the pane. The verification statistics from aggregation are written into a separate folder, 
E:\Verification\EVS_output\Delaware\NAEFS_SQIN\Downstream. Verify in subpanel 2c. Set 
path for outputs that Folder for aggregated statistics shows the above path. Click on the Run 
button near the lower-left corner. Once the run is complete, click on the Next button for the 
Output panel.  

On the Output panel, subpanel 1a. Select unit(s) with results should now list the three VUs for 
the individual forecast points followed by the aggregation unit Downstream. In this subpanel, 
click on Downstream or Aggregation, then right-click anywhere in subpanel 1b. Choose 
products for selected unit and choose Select all times and products. Left-clicking on any of the 
product names will show all lead times in subpanel 1c. Choose lead times for selected product. 
Click on the Run button to generate the products. 

Once the above run is complete, navigate to 
E:\verification\EVS_output\Delaware\NAEFS_SQIN\Downstream to view all XML and PNG 
products and verify that Downstream.Mean_continous_ranked_probability_score_SCORE.png is 
identical to Figure 61. If desired, the EVS products for individual forecast points may also be 
generated. If generated, the location-specific products may be found in 
E:\verification\EVS_output\Delaware\NAEFS_SQIN\*****, where the asterisks denote the 5-
character location identifier. Note that the sample size for the forecast point-specific results 
should be about one-third of that of the aggregation results. The user may repeat the above 
process for the headwater locations and verify that 
Headwater.Mean_continous_ranked_probability_score_SCORE.png in 
E:\verification\EVS_output\Delaware\NAEFS_SQIN\Headwater is identical to Figure 62. 

The user is encouraged to explore other options and functionalities of the EVS for ensemble 
forecast verification in consultation with the EVS Manual. Depending on the options chosen, 
changes made to any of the variable or file names, and the number of runs made, the size of 
the output folders may become very large. It is hence a good practice to clean up the folders 
regularly. 
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Figure 61. Mean CRPS result for downstream locations in Example 2 

 
Figure 62. Mean CRPS result for headwater locations in Example 2 
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A.4 Example 3 – Verification of ensemble streamflow forecast with skill 
score and confidence interval calculations 

In this example, the user performs a scaled-down version of Case 4 in Chapter 7 for 
verification of ensemble forecasts of daily-only streamflow for a single forecast point at SGET2 
(Clear Creek near Sanger, Texas, United States) using a period of record of only one year 
(versus 31 years in Case 4). Due to the greatly reduced sample size, Example 3 is meant 
mainly to describe the mechanics of calculating skill scores and confidence intervals using the 
EVS, rather than to assess skill. 

Navigate to E:\verification\EVS_project_files\UTrinity and double-click on 
UTrinity_HEFS_SQIN, which will launch the EVS for Example 3. Subpanel 1. Add verification 
unit(s) should list three VUs. The VUs, SGET2.MEFP_fcst_flow, SGET2.RClim_fcst_flow and 
SGET2.MEFP_EnsPost_fcst_flow, are for the verification of the MEFP-forced ensemble 
streamflow forecast, resampled climatology and MEFP-forced ensemble streamflow forecasts 
with postprocessing (see Case 4 in Chapter 7 for explanation), respectively.  

As in Examples 1 and 2, modify the paths to Forecast data source, Observed data source and 
Folder for output statistics to match their actual locations on the user’s computer. In 
Example 3, Observed data source is also in XML. The user may want to verify that Observed 
data location ID and Observed data variable ID in the tabbed pane Other options (accessible 
through the More button in subpanel 2b. Set input data sources) match locationId and 
parameterId, respectively, in the header of E:\verification\UTrinity\QME\SGET2_QME.xml. In 
the above, QME is NWS parlance for mean daily flow. Click on the Next button for the 
Verification metrics to compute panel. 

On subpanel 3a. Select metrics to compute, verify that only Sample size and Mean continuous 
ranked probability skill score are checked so that the user may assess the computing time for 
CRPSS calculation with confidence interval. If desired, the user may add any other metrics 
while on this subpanel. 

On subpanel 3c. Edit basic parameters of selected metric ‘Mean continuous ranked probability 
skill score’, click on the More button. Verify in the Main options tabbed pane that Reference 
forecast for skill is set to SGET2.RClim_fcst_flow and click on the Confidence intervals tab. 
Verify that the technique is stationary block bootstrap and Sample size, Minimum sample size, 
Average block size, and Units for block size are 100, 50, 30.0 and DAY, respectively. For 
Interval specification, verify that Lower and Upper are set at 0.05 and 0.95, respectively, for a 
90% confidence interval. For explanations of the above options, the user is referred to pages 
56 through 57 of the EVS Manual. Click on the Run button in the lower-left corner to generate 
the paired files.  

Due to the confidence interval calculation, the above run takes longer than any of the runs in 
Examples 1 or 2. Once the run is complete, skip aggregation and go to the Output panel. At 
this point, the user may want to verify that the paired files have been generated in 
E:\verification\EVS_output\UTrinity\MEFP_SQIN, and that the file for raw pairs for the 
reference forecast, RClim_SQIN, has also been generated in 
E:\verification\EVS_output\UTrinity\RClim_SQIN for skill score calculation. Select 
SGET2.MEFP_fcst_flow in subpanel 1a. Select unit(s) with results and right-click on any one of 
the products and choose Select all times and products. Left-clicking on any one of the products 
will list all applicable lead times in subpanel 1c. Choose lead times for selected product. Click 
on the Run button in the lower-left corner to generate the products.  
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Navigate to E:\verification\EVS_output\UTrinity\MEFP_SQIN for the EVS products generated 
from the above run. Verify that 
SGET2.MEFP_fcst_flow.Mean_continuous_ranked_probability_skill_score.png is similar to 
Figure 63 (due to the randomness associated with bootstrapping, the result will not be 
identical). The figure shows that the CRPSS of MEFP-forced ensemble streamflow forecasts in 
reference to resampled climatology is positive at all lead times, but that, not surprisingly, the 
confidence intervals are very large due to the extremely short period of record. Repeat the 
above with the VU SGET2.MEFP_EnsPost_fcst_flow and navigate to 
E:\verification\EVS_output\UTrinity\MEFP_EnsPost_SQIN to verify that 
SGET2.MEFP_EnsPost_fcst_flow.Mean_continuous_ranked_probability_skill_score.png is similar 
to Figure 64. The figure shows that the CRPSS of MEFP-forced ensemble streamflow forecasts 
with EnsPost is larger than that without EnsPost (note that the y-axes are not identical 
between Figure 63 and Figure 64) at all lead times, but that the 90% confidence intervals are 
very large due to the very short period of record. 

 
Figure 63. CRPSS with confidence intervals for MEFP-forced streamflow ensemble 
forecast for SGET2 in Example 3. The reference forecast is resampled climatology. 
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Figure 64. Same as Figure 63, but streamflow forecast is postprocessed with EnsPost 

A.5 Examples 4–6: computational examples 

Examples 4 through 6 use three different software tools to compute verification information for 
a single case study: ensemble streamflow forecasts for the Meuse River at St Pieter, just 
downstream of the Belgian–Dutch border. The examples are cast as “notebooks”: documents 
from which code can be executed directly. For the printed version of the report, the HTML 
documents are included as appendices. Alongside the downloadable version of the present 
report on the WMO website, the actual notebooks as well as the data required to run the 
examples can be downloaded from the following link: 
https://wmostorage.blob.core.windows.net/wmo-public/hydro-forecast-verification-
guidelines/A4-6_Computational_examples/A4-6_Computational_examples.zip. 

A.6 Example 4 – Computational example: the Ensemble Verification 
System (EVS) 

• The Ensemble Verification System 
• EVS project file 
• Data 
• Running the EVS project 
• Verification of deterministic forecasts 

o Mean absolute error 
o Mean error 
o Root mean square error 

https://wmostorage.blob.core.windows.net/wmo-public/hydro-forecast-verification-guidelines/A4-6_Computational_examples/A4-6_Computational_examples.zip
https://wmostorage.blob.core.windows.net/wmo-public/hydro-forecast-verification-guidelines/A4-6_Computational_examples/A4-6_Computational_examples.zip
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• Verification of probabilistic forecasts 
o Brier’s probability score 
o Reliability diagram 
o Relative Operating Characteristic 

• Parsing EVS outputs to R 

The Ensemble Verification System 
The Ensemble Verification System (EVS) is designed to verify ensemble forecasts of hydrologic and 
hydrometeorological variables, such as temperature, precipitation, and streamflow, issued at discrete 
forecast locations: points or areas. The EVS can be downloaded 
from https://sourceforge.net/projects/ensemble-verification-system/. The download includes the 
EVS binaries, documentation and a sample project. The EVS requires a recent version of Java installed 
on the workstation where it is run. This makes the software platform independent: it can be run on 
Linux, MacOS as well as MS Windows. 

The EVS can be run interactively (i.e., with a graphical user interface) as well as in command line 
mode. In the present example, the latter option will be used. 

EVS project file 
When running the EVS through its graphical user interface, it will save project settings to a .evs file 
which is xml-formatted. When running the EVS in command line mode, reference needs to be made 
to such a project file. For the purpose of the present example, a sample .evs file has been prepared. 

<?xml version="1.0" standalone="yes"?><verification> 

    <verification_unit> 

        <identifiers> 

            <location_id>H-MS-SINT</location_id> 

            <environmental_variable_id>streamflow</environmental_variable_id> 

            <additional_id>cosmo-leps</additional_id> 

        </identifiers> 

        <input_data> 

            <forecast_data_source> 

                <data>/home/jan/projecten/assembla-svn/wmo_computational_examples/evs/H-M
S-SINT.fcst</data> 

            </forecast_data_source> 

            <observed_data_source> 

                <data>/home/jan/projecten/assembla-svn/wmo_computational_examples/evs/H-M
S-SINT.obs</data> 

            </observed_data_source> 

            <forecast_data_type>ASCII</forecast_data_type> 

            <observed_data_type>ASCII</observed_data_type> 

            <forecast_data_location_id>H-MS-SINT</forecast_data_location_id> 

            <observed_data_location_id>H-MS-SINT</observed_data_location_id> 

            <forecast_time_system>Coordinated Universal Time (UTC)</forecast_time_system> 

            <observed_time_system>Coordinated Universal Time (UTC)</observed_time_system> 

            <forecast_support> 

https://sourceforge.net/projects/ensemble-verification-system/
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                <statistic>INSTANTANEOUS</statistic> 

                <existing_attribute_units>METER CUBED/SECOND</existing_attribute_units> 

                <notes></notes> 

            </forecast_support> 

            <observed_support> 

                <statistic>INSTANTANEOUS</statistic> 

                <existing_attribute_units>METER CUBED/SECOND</existing_attribute_units> 

                <notes></notes> 

            </observed_support> 

            <use_all_observations_for_climatology>false</use_all_observations_for_climato
logy> 

            <apply_date_cond_to_climatology>false</apply_date_cond_to_climatology> 

            <apply_value_cond_to_climatology>false</apply_value_cond_to_climatology> 

            <forecast_date_format>yyyyMMddHHmm</forecast_date_format> 

            <observed_date_format>yyyyMMddHHmm</observed_date_format> 

            <global_null_value>-999.0</global_null_value> 

            <data_services> 

                <data_service> 

                    <name>FEWS-DS</name> 

                    <forecast_filterId>simulated</forecast_filterId> 

                    <observed_filterId>observed</observed_filterId> 

                    <convertDatum>false</convertDatum> 

                    <useDisplayUnits>false</useDisplayUnits> 

                    <showThresholds>false</showThresholds> 

                    <omitMissing>true</omitMissing> 

                    <onlyHeaders>false</onlyHeaders> 

                    <documentVersion>1.23</documentVersion> 

                    <forecastCount>1000000</forecastCount> 

                </data_service> 

            </data_services> 

        </input_data> 

        <verification_window> 

            <start_date> 

                <year>1900</year> 

                <month>0</month> 

                <day>1</day> 

            </start_date> 

            <end_date> 

                <year>2100</year> 

                <month>0</month> 

                <day>1</day> 
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            </end_date> 

            <window_in_valid_time>true</window_in_valid_time> 

            <first_lead_period>48.0</first_lead_period> 

            <last_lead_period>48.0</last_lead_period> 

            <forecast_lead_units>HOUR</forecast_lead_units> 

            <sample_size_constraint>0.0</sample_size_constraint> 

        </verification_window> 

        <output_data> 

            <output_data_location>.</output_data_location> 

            <output_graphics_type>PNG</output_graphics_type> 

        </output_data> 

        <paired_data> 

            <paired_data_location>/home/jan/projecten/assembla-svn/wmo_computational_exam
ples/evs/H-MS-SINT_streamflow_cosmo-leps_pairs_raw.xml</paired_data_location> 

            <eliminate_duplicates>true</eliminate_duplicates> 

            <write_conditional_pairs>true</write_conditional_pairs> 

            <write_unconditional_pairs>true</write_unconditional_pairs> 

            <write_gzip_pairs>false</write_gzip_pairs> 

            <paired_write_precision>5</paired_write_precision> 

            <strip_nulls_from_paired_file>true</strip_nulls_from_paired_file> 

            <raw_pairs_in_aggregated_res>false</raw_pairs_in_aggregated_res> 

        </paired_data> 

        <metrics> 

            <metric> 

                <name>BrierScore</name> 

                <double_array_parameter>200.0</double_array_parameter> 

                <main_threshold>true</main_threshold> 

                <threshold_condition>isGreater</threshold_condition> 

                <decompose_parameter>NONE</decompose_parameter> 

                <forecast_type_parameter>regular</forecast_type_parameter> 

                <unconditional_parameter>false</unconditional_parameter> 

                <minimum_sample_size_parameter>0</minimum_sample_size_parameter> 

                <bootstrap_parameters> 

                    <technique>None</technique> 

                </bootstrap_parameters> 

            </metric> 

            <metric> 

                <name>MeanAbsoluteError</name> 

                <probability_array_parameter>-Infinity</probability_array_parameter> 

                <main_threshold>true</main_threshold> 

                <threshold_condition>isGreater</threshold_condition> 
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                <forecast_type_parameter>regular</forecast_type_parameter> 

                <unconditional_parameter>false</unconditional_parameter> 

                <forecast_average_parameter>Mean</forecast_average_parameter> 

                <minimum_sample_size_parameter>0</minimum_sample_size_parameter> 

                <bootstrap_parameters> 

                    <technique>None</technique> 

                </bootstrap_parameters> 

            </metric> 

            <metric> 

                <name>MeanError</name> 

                <double_array_parameter>-Infinity</double_array_parameter> 

                <main_threshold>true</main_threshold> 

                <threshold_condition>isGreater</threshold_condition> 

                <forecast_type_parameter>regular</forecast_type_parameter> 

                <unconditional_parameter>false</unconditional_parameter> 

                <forecast_average_parameter>Mean</forecast_average_parameter> 

                <minimum_sample_size_parameter>0</minimum_sample_size_parameter> 

                <bootstrap_parameters> 

                    <technique>None</technique> 

                </bootstrap_parameters> 

            </metric> 

            <metric> 

                <name>RelativeOperatingCharacteristic</name> 

                <double_array_parameter>200.0</double_array_parameter> 

                <main_threshold>true</main_threshold> 

                <threshold_condition>isGreater</threshold_condition> 

                <roc_points_parameter>10</roc_points_parameter> 

                <forecast_type_parameter>regular</forecast_type_parameter> 

                <unconditional_parameter>false</unconditional_parameter> 

                <fitted_roc_parameter>false</fitted_roc_parameter> 

                <minimum_sample_size_parameter>0</minimum_sample_size_parameter> 

                <bootstrap_parameters> 

                    <technique>None</technique> 

                </bootstrap_parameters> 

            </metric> 

            <metric> 

                <name>ReliabilityDiagram</name> 

                <double_array_parameter>200.0</double_array_parameter> 

                <main_threshold>true</main_threshold> 

                <threshold_condition>isGreater</threshold_condition> 
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                <forecast_type_parameter>regular</forecast_type_parameter> 

                <unconditional_parameter>false</unconditional_parameter> 

                <equal_samples_parameter>false</equal_samples_parameter> 

                <reliability_points_parameter>5</reliability_points_parameter> 

                <minimum_sample_size_parameter>0</minimum_sample_size_parameter> 

                <bootstrap_parameters> 

                    <technique>None</technique> 

                </bootstrap_parameters> 

            </metric> 

            <metric> 

                <name>RootMeanSquareError</name> 

                <double_array_parameter>-Infinity</double_array_parameter> 

                <main_threshold>true</main_threshold> 

                <threshold_condition>isGreater</threshold_condition> 

                <forecast_type_parameter>regular</forecast_type_parameter> 

                <unconditional_parameter>false</unconditional_parameter> 

                <forecast_average_parameter>Mean</forecast_average_parameter> 

                <minimum_sample_size_parameter>0</minimum_sample_size_parameter> 

                <bootstrap_parameters> 

                    <technique>None</technique> 

                </bootstrap_parameters> 

            </metric> 

            <metric> 

                <name>SampleSize</name> 

                <double_array_parameter>-Infinity</double_array_parameter> 

                <main_threshold>true</main_threshold> 

                <threshold_condition>isGreater</threshold_condition> 

                <forecast_type_parameter>regular</forecast_type_parameter> 

                <unconditional_parameter>false</unconditional_parameter> 

            </metric> 

        </metrics> 

    </verification_unit> 

</verification> 

The example project file contains information for the EVS to compute various measures and metrics. 
Note that, for the purpose of the present example, these are computed at the 48-hour lead time 
only. Often, one will want to compute verification data for more than a single lead time. 

Data 
The data that is referred to in the EVS project file comprises two files: a file containing forecast data 
(H-MS-SINT.fcst) and a file containing observed data (H-MS-SINT.obs). 
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The file containing observations contains two columns: one for the valid time and one for forecast 
lead time. 

cat(readLines('H-MS-SINT.obs',n=10),sep='\n') 

200801011200 238.12 

200801011500 236.11 

200801011800 244 .53 

200801012100 242.59 

200801020000 245.33 

200801020600 249.64 

200801021200 230.03 

200801021800 172.21 

200801030000 159.24 

200801030600 247.9 

The forecasts are sixteen-member ensemble forecasts. The file contains 18 columns: forecast valid 
time, forecast lead time and 16 columns, each containing a forecast from a single ensemble member. 

cat(readLines('H-MS-SINT.fcst',n=10),sep='\n') 

200801011200 0 238.12 238.12 238.12 238.12 238.12 238.12 238.12 238.12 238.12 238.12 238.
12 238.12 238.12 238.12 238.12 238.12 

200801011500 3 235.98 235.98 235.98 235.98 235.98 235.98 235.98 235.98 235.98 235.99 235.
98 235.98 235.98 235.98 235.98 235.98 

200801011800 6 216.95 216.95 216.95 216.95 216.95 216.95 217.08 216.95 216.95 216.96 216.
95 216.95 216.95 216.95 216.97 216.95 

200801012100 9 220.4 220.4 220.4 220.4 220.4 220.4 221.03 220.4 220.41 220.45 220.4 220.3
9 220.4 220.4 220.5 220.4 

200801020000 12 203.19 203.08 203.08 203.18 203.21 203.18 204.05 203.2 203.18 203.19 203.
08 203.15 203.17 203.21 203.36 203.18 

200801020600 18 212.52 211.86 211.86 212.43 212.69 212.38 213.95 212.47 212.35 212.42 211
.86 212.25 212.39 212.71 213.14 212.4 

200801021200 24 212.37 211.87 211.87 212.28 212.57 212.25 213.85 212.31 212.21 212.48 211
.87 212.14 212.28 212.58 213 212.21 

200801021800 30 202.2 201.7 201.7 202.11 202.37 202.11 203.57 202.14 202.05 202.42 201.7 
201.97 202.13 202.39 202.77 202.07 

200801030000 36 182.67 182.23 182.22 182.59 182.82 182.63 183.93 182.61 182.54 182.9 182.
23 182.47 182.61 182.85 183.19 182.56 

200801030600 42 196.9 196.47 196.47 196.82 197.05 196.89 198.15 196.85 196.77 197.07 196.
47 196.7 196.85 197.08 197.42 196.79 

Running the EVS project 
The EVS project file is run by referring to the workstation’s Java and to the project file. 

java -jar EVS.jar computational_example_evs.evs 

The run will have produced various files including graphs that show verification results and xml files 
containing numerical values. These include files that give information about the sample size: an xml 
file and an image file. 
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<?xml version="1.0" standalone="yes"?><results> 

<!-- 

    Result file containing the results for a single metric by lead period. 

    Some metrics, such as reliability diagrams, have results for specific thresholds  

    (e.g. probability thresholds).  In that case, the results are stored by lead period  

    and then by threshold value.  The actual data associated with a result always appears  

    within a 'values' tag.  A metric result that comprises a single value will appear as 

    a single value in this tag.  A metric result that comprises a 1D matrix will appear 

    as a row of values separated by commas in the input order.  A metric result that 

    comprises a 2D matrix will appear as a sequence of rows, each with a 'values' tag, 

    which are written in the input order.  For example, a diagram metric with an x and y 

    axis will comprise two rows of data (i.e. two rows within two separate 'values' 

    tags).  The default input order would be data for the x axis followed by data for the 

    y axis.  Data that refer to cumulative probabilities are, by default, always defined 

    in increasing size of probability. 

--> 

    <meta_data> 

        <thresholds_type>true</thresholds_type> 

        <original_file_id>H-MS-SINT.streamflow.cosmo-leps.Sample_size.xml</original_file_
id> 

    </meta_data> 

    <result> 

        <lead_hour>48.0</lead_hour> 

        <threshold_data> 

            <threshold> 

                <threshold_value>All data</threshold_value> 

                <data> 

                    <values>600.0</values> 

                </data> 

            </threshold> 

        </threshold_data> 

    </result> 

</results> 

In graphical format, the information looks as follows. 

echo "![](H-MS-SINT.streamflow.cosmo-leps.Sample_size.png)"; 
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Verification of deterministic forecasts 
The deterministic verification metrics that are computed, are: 

• Mean absolute error 
• Mean error 
• Root mean square error 

The EVS project is set up to, where deterministic forecasts are verified, use the ensemble mean as 
the deterministic forecast. 

Mean absolute error 

From the xml and the png files, we identify the value of the mean absolute error as approx. 55 m33/s. 

<?xml version="1.0" standalone="yes"?><results> 

<!-- 

    Result file containing the results for a single metric by lead period. 

    Some metrics, such as reliability diagrams, have results for specific thresholds  

    (e.g. probability thresholds).  In that case, the results are stored by lead period  

    and then by threshold value.  The actual data associated with a result always appears  

    within a 'values' tag.  A metric result that comprises a single value will appear as 

    a single value in this tag.  A metric result that comprises a 1D matrix will appear 

    as a row of values separated by commas in the input order.  A metric result that  
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    comprises a 2D matrix will appear as a sequence of rows, each with a 'values' tag,  

    which are written in the input order.  For example, a diagram metric with an x and y 

    axis will comprise two rows of data (i.e. two rows within two separate 'values'  

    tags).  The default input order would be data for the x axis followed by data for the 

    y axis.  Data that refer to cumulative probabilities are, by default, always defined 

    in increasing size of probability. 

--> 

    <meta_data> 

        <thresholds_type>true</thresholds_type> 

        <original_file_id>H-MS-SINT.streamflow.cosmo-leps.Mean_absolute_error.xml</origin
al_file_id> 

    </meta_data> 

    <result> 

        <lead_hour>48.0</lead_hour> 

        <threshold_data> 

            <threshold> 

                <threshold_value>All data</threshold_value> 

                <data> 

                    <values>55.004348958333345</values> 

                </data> 

            </threshold> 

        </threshold_data> 

    </result> 

</results> 

echo "![](H-MS-SINT.streamflow.cosmo-leps.Mean_absolute_error.png)"; 
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Mean error 

From the xml and the png files, we identify the value of the mean error as 13.4 m33/s. 

<?xml version="1.0" standalone="yes"?><results> 

<!-- 

    Result file containing the results for a single metric by lead period. 

    Some metrics, such as reliability diagrams, have results for specific thresholds  

    (e.g. probability thresholds).  In that case, the results are stored by lead period  

    and then by threshold value.  The actual data associated with a result always appears  

    within a 'values' tag.  A metric result that comprises a single value will appear as 

    a single value in this tag.  A metric result that comprises a 1D matrix will appear 

    as a row of values separated by commas in the input order.  A metric result that 

    comprises a 2D matrix will appear as a sequence of rows, each with a 'values' tag, 

    which are written in the input order.  For example, a diagram metric with an x and y 

    axis will comprise two rows of data (i.e. two rows within two separate 'values' 

    tags).  The default input order would be data for the x axis followed by data for the 

    y axis.  Data that refer to cumulative probabilities are, by default, always defined 

    in increasing size of probability. 

--> 

    <meta_data> 
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        <thresholds_type>true</thresholds_type> 

        <original_file_id>H-MS-SINT.streamflow.cosmo-leps.Mean_error.xml</original_file_i
d> 

    </meta_data> 

    <result> 

        <lead_hour>48.0</lead_hour> 

        <threshold_data> 

            <threshold> 

                <threshold_value>All data</threshold_value> 

                <data> 

                    <values>13.366328125000004</values> 

                </data> 

            </threshold> 

        </threshold_data> 

    </result> 

</results> 

echo "![](H-MS-SINT.streamflow.cosmo-leps.Mean_error.png)"; 

 

Root mean square error 

From the xml ad the png files, we identify the value of the root mean square error as 82.9 m33/s. 
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<?xml version="1.0" standalone="yes"?><results> 

<!-- 

    Result file containing the results for a single metric by lead period. 

    Some metrics, such as reliability diagrams, have results for specific thresholds  

    (e.g. probability thresholds).  In that case, the results are stored by lead period  

    and then by threshold value.  The actual data associated with a result always appears  

    within a 'values' tag.  A metric result that comprises a single value will appear as 

    a single value in this tag.  A metric result that comprises a 1D matrix will appear 

    as a row of values separated by commas in the input order.  A metric result that 

    comprises a 2D matrix will appear as a sequence of rows, each with a 'values' tag, 

    which are written in the input order.  For example, a diagram metric with an x and y 

    axis will comprise two rows of data (i.e. two rows within two separate 'values' 

    tags).  The default input order would be data for the x axis followed by data for the 

    y axis.  Data that refer to cumulative probabilities are, by default, always defined 

    in increasing size of probability. 

--> 

    <meta_data> 

        <thresholds_type>true</thresholds_type> 

        <original_file_id>H-MS-SINT.streamflow.cosmo-leps.Root_mean_square_error.xml</ori
ginal_file_id> 

    </meta_data> 

    <result> 

        <lead_hour>48.0</lead_hour> 

        <threshold_data> 

            <threshold> 

                <threshold_value>All data</threshold_value> 

                <data> 

                    <values>82.8658049499192</values> 

                </data> 

            </threshold> 

        </threshold_data> 

    </result> 

</results> 

echo "![](H-MS-SINT.streamflow.cosmo-leps.Root_mean_square_error.png)"; 
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Verification of probabilistic forecasts 
The probabilistic verification metrics that are computed, are: 

• Brier’s probability score 
• Reliability diagram 
• Relative Operating Characteristic 

These metrics are computed for the event that streamflow, either forecasted or observed, exceeds 
the 200 m33/s threshold. 

Brier’s probability score 

Brier’s probability score is computed for the streamflow event defined by the exceedance of the 200 
m33/s threshold. The (unitless) value of the score is 0.08. 

<?xml version="1.0" standalone="yes"?><results> 

<!-- 

    Result file containing the results for a single metric by lead period. 

    Some metrics, such as reliability diagrams, have results for specific thresholds  

    (e.g. probability thresholds).  In that case, the results are stored by lead period  

    and then by threshold value.  The actual data associated with a result always appears  

    within a 'values' tag.  A metric result that comprises a single value will 

    appear as a single value in this tag.  A metric result that comprises a 1D 
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    matrix will appear as a row of values separated by commas in the input order.  A 

    metric result that comprises a 2D matrix will appear as a sequence of rows, each with 

    a 'values' tag, which are written in the input order.  For example, a diagram metric 

    with an x and y axis will comprise two rows of data (i.e. two rows within two 

    separate 'values' tags).  The default input order would be data for the x axis 

    followed by data for the y axis.  Data that refer to cumulative probabilities are, by 

    default, always defined in increasing size of probability. 

--> 

    <meta_data> 

        <thresholds_type>true</thresholds_type> 

        <original_file_id>H-MS-SINT.streamflow.cosmo-leps.Brier_score.xml</original_file_
id> 

    </meta_data> 

    <result> 

        <lead_hour>48.0</lead_hour> 

        <threshold_data> 

            <threshold> 

                <threshold_value>GT 200.0</threshold_value> 

                <data> 

                    <values>0.08354817708333333</values> 

                </data> 

            </threshold> 

        </threshold_data> 

    </result> 

</results> 

echo "![](H-MS-SINT.streamflow.cosmo-leps.Brier_score.png)"; 
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Reliability diagram 

The reliability diagram consists of multiple data points (or plotting positions) which are included in 
the xml output. 

<?xml version="1.0" standalone="yes"?><results> 

<!-- 

    Result file containing the results for a single metric by lead period. 

    Some metrics, such as reliability diagrams, have results for specific thresholds  

    (e.g. probability thresholds).  In that case, the results are stored by lead period  

    and then by threshold value.  The actual data associated with a result always appears  

    within a 'values' tag.  A metric result that comprises a single value will appear as 

    a single value in this tag.  A metric result that comprises a 1D matrix will appear 

    as a row of values separated by commas in the input order.  A metric result that 

    comprises a 2D matrix will appear as a sequence of rows, each with a 'values' tag, 

    which are written in the input order.  For example, a diagram metric with an x and y 

    axis will comprise two rows of data (i.e. two rows within two separate 'values' 

    tags).  The default input order would be data for the x axis followed by data for the 

    y axis.  Data that refer to cumulative probabilities are, by default, always defined 

    in increasing size of probability. 

--> 
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    <meta_data> 

        <thresholds_type>true</thresholds_type> 

        <original_file_id>H-MS-SINT.streamflow.cosmo-leps.Reliability_diagram.xml</origin
al_file_id> 

    </meta_data> 

    <result> 

        <lead_hour>48.0</lead_hour> 

        <threshold_data> 

            <threshold> 

                <threshold_value>GT 200.0</threshold_value> 

                <data> 

                    <values>0.01741, 0.3125, 0.46667, 0.7125, 0.99708</values> 

                    <values>0.05705, 0.3, 0.53333, 0.4, 0.91051</values> 

                    <values>298.0, 20.0, 15.0, 10.0, 257.0</values> 

                    <values>0.44833, 0.44833, 0.44833, 0.44833, 0.44833</values> 

                    <values>0.23287, 0.38042, 0.4575, 0.58042, 0.72271</values> 

                </data> 

            </threshold> 

        </threshold_data> 

    </result> 

</results> 

echo "![](H-MS-SINT.streamflow.cosmo-leps.Reliability_diagram.48.0.png)"; 
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Relative Operating Characteristic 

The relative operating characteristic, too, consists of multiple data points (or plotting positions) 
which are included in the xml output. 

<?xml version="1.0" standalone="yes"?><results> 

<!-- 

    Result file containing the results for a single metric by lead period. 

    Some metrics, such as reliability diagrams, have results for specific thresholds  

    (e.g. probability thresholds).  In that case, the results are stored by lead period  

    and then by threshold value.  The actual data associated with a result always appears  

    within a 'values' tag.  A metric result that comprises a single value will appear as 

    a single value in this tag.  A metric result that comprises a 1D matrix will appear 

    as a row of values separated by commas in the input order.  A metric result that 

   comprises a 2D matrix will appear as a sequence of rows, each with a 'values' tag, 

    which are written in the input order.  For example, a diagram metric with an x and y 

    axis will comprise two rows of data (i.e. two rows within two separate 'values' 

    tags).  The default input order would be data for the x axis followed by data for the 

    y axis.  Data that refer to cumulative probabilities are, by default, always defined 

    in increasing size of probability. 

--> 
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    <meta_data> 

        <thresholds_type>true</thresholds_type> 

        <original_file_id>H-MS-SINT.streamflow.cosmo-leps.Relative_operating_characterist
ic.xml</original_file_id> 

    </meta_data> 

    <result> 

        <lead_hour>48.0</lead_hour> 

        <threshold_data> 

            <threshold> 

                <threshold_value>GT 200.0</threshold_value> 

                <data> 

                    <values>0.0, 0.0574, 0.06344, 0.06949, 0.08157, 0.08761, 0.09366, 0.1
0876, 0.13595, 0.15106, 0.20846, 1.0, 1.0</values> 

                    <values>0.0, 0.86245, 0.86617, 0.86989, 0.87732, 0.88476, 0.89591, 0.
9145, 0.93309, 0.9368, 0.94424, 1.0, 1.0</values> 

                </data> 

            </threshold> 

        </threshold_data> 

    </result> 

</results> 

echo "![](H-MS-SINT.streamflow.cosmo-leps.Relative_operating_characteristic.48.0.png)"; 
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Parsing EVS outputs to R 
The EVS xml outputs can be parsed to R using a script that is part of the EVS download: Utilities.R. 
The script requires the R XML package to be installed. 

source('Utilities.R') 

The script includes various functions including readEVSScores for reading single-valued verification 
metrics, and readEVSDiagrams for reading data for various technical diagrams. The functions store 
the data from the xml file into a list, from which it can be read for further use. 

readEVSScores(file='H-MS-SINT.streamflow.cosmo-leps.Brier_score.xml') 

## $lead.times 

## [1] 48 

##  

## $events 

## [1] "> 200.0" 

##  

## $events.numeric 

## [1] 200 

##  

## $events.probs 
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## [1] NA 

##  

## $scores 

##            [,1] 

## [1,] 0.08354818 

##  

## $lower 

##      [,1] 

## [1,]   NA 

##  

## $upper 

##      [,1] 

## [1,]   NA 

A.7 Example 5 – Computational example: the R verification package 

• Preliminaries 
o Read data 
o Plot raw data 

• Verification of deterministic forecasts 
• Verification of probabilistic forecasts 

o Brier’s probability score 
o Technical diagrams 

The present document contains a computational verification example using R and 
its verification package. The example includes various data processing steps. These are done using 
the reshape2, lubridate, and dplyr packages. These processing steps will not be explained in detail. 
Plotting is done using the ggplot2 package. You’ll need to have these pre-installed. The file includes 
code for creating an animation. That code is not run. If you do want to run it, you’ll have to ensure 
that the gganimate and the gifski packages are installed also. 

The verification package is described in some detail in its manual which is available 
from https://cran.r-project.org/web/packages/verification/verification.pdf. 

Preliminaries 
First, we empty the R environment of any existing variables and we load all required libraries. 

rm(list=objects()) 

library(verification) 

library(lubridate) 

library(dplyr) 

library(ggplot2) 

library(reshape2) 

options('max.print'=15) 

https://cran.r-project.org/web/packages/verification/verification.pdf
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Read data 

We read the data from file. The various files contain readily paired forecast and observation data. 
Three files are read: deterministic forecasts ensemble forecasts and probabilistic forecasts, 
respectively. All files contain pairs of forecasts and their corresponding observations. The 
probabilistic forecast contains probabilities of the event that the future streamflow will exceed the 
value of 200 m33/s. Upon reading the file, the ‘character’ date/time columns are converted into a 
format that R interprets as a date/time. 

pairs_det  <- read.csv('H-MS-SINT.det', as.is=T) %>% mutate(validtime=ymd_hms(validtime)) 

pairs_ens  <- read.csv('H-MS-SINT.ens', as.is=T) %>% mutate(validtime=ymd_hms(validtime))  

pairs_prob <- read.csv('H-MS-SINT.prob',as.is=T) %>% mutate(validtime=ymd_hms(validtime)) 

head(pairs_det) 

##             validtime leadtime     fcst    obs 

## 1 2008-01-01 12:00:00        0 238.1200 238.12 

## 2 2008-01-01 15:00:00        3 235.9806 236.11 

## 3 2008-01-01 18:00:00        6 216.9600 244.53 

##  [ reached 'max' / getOption("max.print") -- omitted 3 rows ] 

head(pairs_ens) 

##      validtime leadtime obs X01 X02 X03 X04 X05 X06 X07 X08 X09 X10 X11 X12 X13 

##      X14 X15 X16 

##  [ reached 'max' / getOption("max.print") -- omitted 6 rows ] 

head(pairs_prob) 

##             validtime leadtime fcst obs 

## 1 2008-01-01 12:00:00        0 0.94   1 

## 2 2008-01-01 15:00:00        3 0.94   1 

## 3 2008-01-01 18:00:00        6 0.94   1 

##  [ reached 'max' / getOption("max.print") -- omitted 3 rows ] 

The R verification package does not directly use ensemble data. In the present example, it is 
imported for visualization only. Visualization using ggplot is much easier when the data is ‘tidy’ 
hence the dataframe is molten. 

pairs_ens <- pairs_ens %>% melt(id.vars=c('validtime','leadtime','obs'),variable.name='me
mber',value.name='fcst') 

head(pairs_ens) 

##             validtime leadtime    obs member   fcst 

## 1 2008-01-01 12:00:00        0 238.12    X01 238.12 

## 2 2008-01-01 15:00:00        3 236.11    X01 235.98 

## 3 2008-01-01 18:00:00        6 244.53    X01 216.95 

##  [ reached 'max' / getOption("max.print") -- omitted 3 rows ] 

Plot raw data 

We plot observed values. For that, we create a new object obs: 
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obs <- pairs_det %>% select(validtime, obs) %>% distinct() 

ggplot(data=obs, aes(x=validtime,y=obs)) + geom_line() + scale_x_datetime() 

 

Then we plot a hydrograph that combines forecast and observations. The data is filtered to show the 
January 1, 2008, 12Z forecast only. 

my_data <- pairs_ens %>% filter(validtime - hours(leadtime) == ymd_hm('200801011200')) 

   

ggplot( data=my_data,aes(x=validtime, y=fcst, group=interaction(member))) + 

  geom_line() + geom_line(aes(x=validtime, y=obs), col='blue') 
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Finally, we plot a scatter diagram. 

ggplot(data=pairs_ens %>% filter(leadtime == 48), aes(x=fcst, y=obs)) + 

  geom_point(alpha = 0.25) + 

  labs(title = paste0('Observations vs forecasts, 48h leadtime')) + 

  theme(legend.position = "none") 
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One could have opted to produce an animation instead. 

# Not run 

library('gganimate') 

library('gifski') 

ggplot(data=pairs_ens, aes(x=fcst, y=obs)) + geom_point(alpha = 0.25) + 

  transition_states(leadtime, transition_length = 2, state_length = 1) + enter_fade() + e
xit_shrink() + ease_aes('sine-in-out') + 

  labs(title = paste0('Observations vs forecasts, {closest_state}h leadtime')) + theme(le
gend.position = "none") 

Below is a scatter plot of the probabilistic forecasts. Do you think this is a helpful plot? 

ggplot(data=pairs_prob %>% filter(leadtime == 48), aes(x=fcst, y=obs)) + 

  geom_point(alpha = 0.25) + 

  labs(title = paste0('Observations vs forecasts, 48h leadtime')) + 

  theme(legend.position = "none") 
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We plot a timeseries of both the forecasts and the observations. This is a little more informative than 
above scatter plot. 

my_data <- pairs_prob %>% filter(leadtime == 48, year(validtime)==2008) 

 

ggplot(data=my_data, aes(x=validtime)) + 

  geom_col(aes(y=fcst), colour = 'lightblue', fill = 'lightblue', size=0.15) + 

  geom_point(aes(y=obs),  colour = 'black') + 

  labs(title = paste0('Observations vs forecasts, 48h leadtime')) + #theme(legend.positio
n = "none") + 

  ylab('fcst (blue lines) and obs (black dots)') 
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Verification of deterministic forecasts 
The R verification package requires that a so-called verification object is created. This object contains 
some summary verification metrics and can be used to create various technical diagrams. We 
compute verification metrics for the 48-hour leadtime. 

my_pairs <- pairs_det %>% filter(leadtime==48) 

verify(obs=my_pairs$obs, pred=my_pairs$fcst, frcst.type='cont', obs.type='cont', show=F) 

## $baseline.tf 

## [1] FALSE 

##  

## $MAE 

## [1] 55.00435 

##  

## $MSE 

## [1] 6866.742 

##  

## $ME 

## [1] 13.36633 

##  

## $MSE.baseline 

## [1] 53745.48 
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##  

## $MSE.pers 

## [1] 11271.81 

##  

## $SS.baseline 

## [1] 0.8722359 

##  

## $obs 

##  [1] 198.31 180.33 234.33 555.59 373.76 406.16 421.17 443.34 441.78 429.20 

## [11] 468.00 380.70 596.57 662.14 641.07 

##  [ reached getOption("max.print") -- omitted 585 entries ] 

##  

## $pred 

##  [1] 201.2594 183.2500 181.5188 395.0256 394.8388 489.0456 453.7744 471.8775 

##  [9] 423.6919 592.8506 505.5431 380.2556 620.4394 879.1194 869.0400 

##  [ reached getOption("max.print") -- omitted 585 entries ] 

##  

## $baseline 

## [1] 253.1124 

##  

## attr(,"class") 

## [1] "verify"    "cont.cont" 

Verification of probabilistic forecasts 
Then we do the same for the probabilistic forecasts: 

my_pairs <- pairs_prob %>% filter(leadtime==48) 

verify(obs=my_pairs$obs, pred=my_pairs$fcst, frcst.type='prob', obs.type='binary', show=F
) 

## $baseline.tf 

## [1] FALSE 

##  

## $bs 

## [1] 0.0802 

##  

## $bs.baseline 

## [1] 0.2473306 

##  

## $ss 

## [1] 0.6757376 

##  
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## $bs.reliability 

## [1] 0.005193238 

##  

## $bs.resol 

## [1] 0.1723238 

##  

## $bs.uncert 

## [1] 0.2473306 

##  

## $y.i 

##  [1] 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 

##  

## $obar.i 

##  [1] 0.05415162 0.09523810 0.35714286 0.16666667 0.53846154 0.50000000 

##  [7] 0.50000000 0.33333333 0.33333333 0.92430279 

##  

## $prob.y 

##  [1] 0.461666667 0.035000000 0.023333333 0.010000000 0.021666667 0.006666667 

##  [7] 0.003333333 0.015000000 0.005000000 0.418333333 

##  

## $obar 

## [1] 0.4483333 

##  

## $thres 

##  [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

##  

## $check 

## [1] 0.0802 

##  

## $bins 

## [1] TRUE 

##  

## $obs 

##  [1] 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

##  [ reached getOption("max.print") -- omitted 585 entries ] 

##  

## $pred 

##  [1] 0.94 0.00 0.00 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

##  [ reached getOption("max.print") -- omitted 585 entries ] 

##  
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## attr(,"class") 

## [1] "verify"   "prob.bin" 

We create a new variable that contains the verification object; this allows for reusing the object for 
plotting various technical diagrams. 

verification_object <- verify(obs=my_pairs$obs, pred=my_pairs$fcst, frcst.type='prob', ob
s.type='binary', show=F, thresholds = seq(-0.05,1.05,0.1)) 

Brier’s probability score 

From the ‘probabilistic’ verification object, we can extract the value of various summary metrics 
including the Brier score and its decomposition: 

verification_object$bs 

## [1] 0.08028333 

verification_object$bs.reliability 

## [1] 0.004230695 

verification_object$bs.resol 

## [1] 0.1712779 

verification_object$bs.uncert 

## [1] 0.2473306 

Technical diagrams 

The ‘probabilistic’ verification object allows us to easily plot various technical diagrams such as 
the reliability diagram, the attribute diagram and the relative operating characteristic: 

reliability.plot(verification_object) 
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attribute(verification_object) 
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## NULL 

roc.plot(verification_object) 
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A.8 Example 6 – Computational example: the verif package 

The present example uses the verif forecast verification tool to assess the quality of a set of streamflow 
ensemble forecasts for a location on River Meuse. The tool can be downloaded from its portal 
at https://github.com/WFRT/verif. The portal includes installation instructions, documentations and 
examples. In addition, there is a wiki which describes the tool's features and constitutes a de 
facto manual: https://github.com/WFRT/verif/wiki. 

The verif tool can be used as a Python module as well as a command line tool. In the present example, 
the verif package version 1.2.3 is used as a module within Python. 

The tool includes many more options than those highlighted in the present document hence we encourage 
you to explore the tool’s web portal and the wiki in more detail. 

Preliminaries 
First, the required libraries are loaded. 

In [13]: 
    import numpy as np 
    import pandas as pd 
    import matplotlib.pyplot as plt 
    import verif.data 
    import verif.input 
    import verif.interval 
    import verif.metric 

https://github.com/WFRT/verif
https://github.com/WFRT/verif/wiki
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Data 
The verif tool allows for verification of deterministic and probabilistic forecasts. As the Meuse forecasts 
constitute ensemble forecasts, these have to be re-cast in either deterministic or probabilistic form. This 
was done prior the verification exercise. verif comes with a script that can do this; 
see https://github.com/WFRT/verif/wiki/Useful-scripts for details. 

The wiki pages on the verif web portal outline how input data must be 
formatted: https://github.com/WFRT/verif/wiki/Arranging-my-own-data. For the present example, we 
have prepared two data files. One contains the deterministic forecasts and their verifying observations; the 
other the ensemble and the probabilistic forecasts and their verifying observations. The files contain data 
for a single location only, but note that the tool allows for including data for multiple locations. 

The data files are structured as shown below. Note that for the purpose of visualization in the present 
document, the file contents are only read partially. 

In [14]: 
    det_file = open('H-MS-SINT.det').read(500) 
    print(det_file) 

    # variable: Streamflow rate 
    # units: $m^3/s$ 
    date hour leadtime obs fcst 
    20080101 12 0 238.12 238.12 
    20080101 12 3 236.11 235.980625 
    20080101 12 6 244.53 216.96 
    20080101 12 9 242.59 220.44875 
    20080101 12 12 245.33 203.230625 
    20080101 12 18 249.64 212.48 
    20080101 12 24 230.03 212.38375 
    20080101 12 30 172.21 202.2125 
    20080101 12 36 159.24 182.690625 
    20080101 12 42 247.9 196.921875 
    20080101 12 48 198.31 201.259375 
    20080101 12 60 173.3 170.150625 
    20080101 12 72 180.33 188.4 
    20080101 12 84 187.61 159 

In [15]: 
    ens_file = open('H-MS-SINT.ens').read(1000) 
    print(ens_file) 

    # variable: Streamflow rate 
    # units: $m^3/s$ 
    date hour leadtime obs 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 p100 p200 p400 
p800 q0 q0.1 q0.2 q0.3 q0.4 q0.5 q0.6 q0.7 q0.8 q0.9 q1 
20080101 12 0 238.12 238.12 238.12 238.12 238.12 238.12 238.12 238.12 238.12 238.12 238.1
2 238.12 238.12 238.12 238.12 238.12 238.12 0.0588235294117647 0.0588235294117647 1 1 238
.12 238.12 238.12 238.12 238.12 238.12 238.12 238.12 238.12 238.12 238.12 
    20080101 15 3 236.11 235.98 235.98 235.98 235.98 235.98 235.98 235.98 235.98 235.98 2
35.99 235.98 235.98 235.98 235.98 235.98 235.98 0.0588235294117647 0.0588235294117647 1 1 
235.98 235.98 235.98 235.98 235.98 235.98 235.98 235.98 235.98 235.98 235.99 
    20080101 18 6 244.53 216.95 216.95 216.95 216.95 216.95 216.95 217.08 216.95 216.95 2
16.96 216.95 216.95 216.95 216.95 216.97 216.95 0.0588235294117647 0.0588235294117647 1 1 
216.95 216.95 216.95 216.95 216.95 216.95 216.95 216.95 216.95 216.965 217.08 
20080101 21 9 242.59 220.4 220.4 220.4 220.4 220.4 220.4 
The contents of the H-MS-SINT.det and H-MS-SINT.ens files are used to create verification objects of 
the verif.data.Data type. As for some purposes, we will only want to plot and/or compute data for a specific 
lead time, a second verification object (_48) is created. 

In [16]: 
    pairs_det = verif.input.get_input("H-MS-SINT.det") 
    data_det  = verif.data.Data([pairs_det]) 
    data_det_48h = verif.data.Data([pairs_det], leadtimes=[48]) 
    data_det_20080101 = verif.data.Data([pairs_det],dates=[20080101]) 

https://github.com/WFRT/verif/wiki/Useful-scripts
https://github.com/WFRT/verif/wiki/Arranging-my-own-data
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    print(data_det) 

    <verif.data.Data object at 0x000002B2386A1C10> 

In [17]: 
    pairs_ens = verif.input.get_input("H-MS-SINT.ens") 
    data_ens  = verif.data.Data([pairs_ens]) 
    data_ens_48h = verif.data.Data([pairs_ens], leadtimes=[48]) 
    print(data_ens) 

    <verif.data.Data object at 0x000002B2370F8400> 

Exploration of raw data 
From the verification objects, the raw data can be explored. verif allows for plotting long-term timeseries, a 
single forecast hydrograph and the verifying observations, and scatter plots. Note that this cannot be done 
for ensemble forecasts. 

In [18]: 
output = verif.output.TimeSeries() 
output.figsize = [12,5] 
output.plot(data_det_48h) 

 
In [19]: 
    output = verif.output.TimeSeries() 
    output.figsize = [12,5] 
    output.plot(data_det_20080101) 
    #output.csv(data_det) #for generating text output 
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In [20]: 
    output = verif.output.Scatter() 
    output.plot(data_det_48h) 

 

Verification of deterministic forecasts 
verif allows for summarizing the quality of forecasts using a large number of summary metrics. These 
include bias, mean bias, mean absolute error and root mean squared error. A full list is shown 
at https://github.com/WFRT/verif/wiki/List-of-metrics. Here, the computation of mean absolute error 
(mae), the root mean squared error (rmse) and bias is demonstrated. 

In [21]: 
    metrics = [verif.metric.Mae(), verif.metric.Rmse(), verif.metric.Bias()] 

https://github.com/WFRT/verif/wiki/List-of-metrics
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    for metric in metrics: 
        output = verif.output.Standard(metric) 
        output.figsize = [12,5] 
        output.plot(data_det) 
        output.csv(data_det) 

 
Leadtime,H-MS-SINT.det 
0.0,0 
3.0,37.1822 
6.0,41.1568 
9.0,42.831 
12.0,41.8123 
18.0,38.8361 
24.0,48.9172 
30.0,45.1477 
36.0,50.1115 
42.0,49.4071 
48.0,55.0043 
60.0,53.8959 
72.0,63.6788 
84.0,62.2885 
96.0,73.4854 
108.0,72.6281 
120.0,79.7995 

 
Leadtime,H-MS-SINT.det 
0.0,0 
3.0,51.6739 
6.0,56.8027 
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9.0,65.3277 
12.0,59.6484 
18.0,58.0823 
24.0,70.6843 
30.0,68.8936 
36.0,78.7351 
42.0,74.677 
48.0,82.8658 
60.0,84.4118 
72.0,95.7289 
84.0,99.3433 
96.0,109.408 
108.0,115.059 
120.0,119.503 

 
Leadtime,H-MS-SINT.det 
0.0,0 
3.0,-3.49366 
6.0,4.38072 
9.0,-0.452529 
12.0,-10.0647 
18.0,-3.1836 
24.0,13.2834 
30.0,-1.29227 
36.0,-7.19521 
42.0,-4.71902 
48.0,13.3663 
60.0,-4.0438 
72.0,16.0964 
84.0,-1.13481 
96.0,21.8324 
108.0,6.15552 
120.0,26.3862 

Verification of probabilistic forecasts 
Various metrics that measure the quality of probabilistic forecasts can be computed. A full list is shown 
below the 'probabilistic' header at https://github.com/WFRT/verif/wiki/List-of-metrics. In the present 
document, Brier's probability score as well as various decompositions are computed. 

Brier's probability score 
In [22]: 
    metrics = [verif.metric.Bs(), verif.metric.BsRel(),verif.metric.BsRes(), 
verif.metric.BsUnc()] 
    for metric in metrics: 
        output = verif.output.Standard(metric) 

https://github.com/WFRT/verif/wiki/List-of-metrics
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        output.thresholds = [100,200,400,800] #Note that these were the thresholds that 
were included in the input .ens file 
        output.figsize = [12,5] 
        output.plot(data_ens_48h) 
        output.csv(data_ens_48h) 

 
Threshold,H-MS-SINT.ens 
100,0.116355 
200,0.0804037 
400,0.0496597 
800,0.019158 

 
Threshold,H-MS-SINT.ens 
100,0.00777652 
200,0.00617704 
400,0.00414394 
800,0.00170024 
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Threshold,H-MS-SINT.ens 
100,0.102381 
200,0.172324 
400,0.120565 
800,0.0268846 

 
Threshold,H-MS-SINT.ens 
100,0.210664 
200,0.247331 
400,0.166864 
800,0.0444889 

Technical diagrams 

verif allows for creating various technical diagrams including the reliability diagram and the relative 
operating characteristic. 

In [23] 
    output = verif.output.Reliability() 
    output.thresholds = [200] 
    output.plot(data_ens_48h) 
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In [24]: 
    output = verif.output.Roc() 
    output.thresholds = [200] 
    output.figsize = [12,5] 
    output.plot(data_ens_48h) 
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A.9 Example 7 – Compare accuracy, reliability and sharpness of two 
ensemble streamflow forecasting systems in a stream with zero flow 

Setup 

We first must load data, specify the forecast evaluation period and select the streamflow gauge 
to verify. 

Add paths to data and code 

First, we need to point to the data and functions needed to run this code. 

sPath = matlab.desktop.editor.getActiveFilename; 
indx = strfind(sPath,filesep); 
addpath(genpath(sPath(1:indx(end-1)-1))); 

Load forecasts and data 

Set verification period 

Because of the large volumes of data involved, for this example we verify forecasts issued for 
a single month (a total of 56 forecasts). The month includes zero and non-zero observations. 

In general, it is desirable to assess as many retrospective forecasts as possible to ensure 
verification statistics are robust, so long as each forecast–observation pair is independent of 
other pairs. In this case we are calculating verification metrics for each lead time, and 
forecasts are issued every 12 hours. This means forecast–observations pairs are separated by 
at least 12 hours. It is likely that streamflow data 12 hours apart are correlated to some 
extent, meaning that some of the points will not be strictly independent. This mainly affects 
the statistical significance tests we perform for reliability. For simplicity, we ignore the 
assumption of independence throughout this example, and describe how this issue can be 
dealt with for significance tests of reliability when we describe those methods. Note also that 
as we are testing only a small subset of the forecasts Bennett et al. (2021) used, the results in 
this example differ somewhat from those presented in that study.  

% The start and end dates of the verification period (inclusive) 
stDate = datetime(2010,2,1); 
enDate = datetime(2010,2,28,23,0,0); 

Set gauge to be verified 

Forecasts are generated at multiple sites, but we focus on only one site to keep this example 
simple. 

stationId = 4; 

Load data and forecasts from netCDF files 

We store forecasts and data in netCDF files of our own specification. This specification allows 
us to store forecasts issued at multiple times and multiple locations in a single file. Forecasts 
are generated twice daily at the hourly timestep, and feature a large number of ensemble 
members (n = 1 000). The specification is documented at https://github.com/csiro-
hydroinformatics/efts/blob/master/docs/netcdf_for_water_forecasting.md. 

% Load observations 
obsNc = "Brisbane_flow_utc_station.nc"; 
obsQ = readFctNc(obsNc,'q_obs'); 

https://github.com/csiro-hydroinformatics/efts/blob/master/docs/netcdf_for_water_forecasting.md
https://github.com/csiro-hydroinformatics/efts/blob/master/docs/netcdf_for_water_forecasting.md
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% Load forecasts from method 1: the 'old' ERRIS method 
oldFctNc = "Brisbane_GR4MUSKERRIS_7DAY_fct_Obsfrcng_xv2010_rstrcOn.nc"; 
oldFctQ = readFctNc(oldFctNc,'q_sim','start',stDate,'end',enDate); 
 
% Load forecasts from method 2: the 'new' ERRIS method 
newFctNc = "Brisbane_GR4MUSKMAERRIS_7DAY_fct_Obsfrcng_xv2010_s2W240genR1.nc"; 
newFctQ = readFctNc(newFctNc,'q_sim','start',stDate,'end',enDate); 
 
% Get units of lead time (for use in generating climatology later) 
leadTimeUnits = ncreadatt(newFctNc,'lead_time','units'); 
strInd = strfind(leadTimeUnits,' since'); 
leadTimeUnits = leadTimeUnits(1:strInd(1)-1); 

Order observations for verification 

This step orders observations to simplify the calculation of performance scores conditioned on 
lead time. 

% Allocate memory 
verObs = zeros(size(newFctQ.data,[1 4]))*nan; 
 
% Order observations by forecast dates 
for t = 1:size(newFctQ.timeUTC) 
    [~,tIndx] = ismember(newFctQ.leadTimeUTC(:,t),obsQ.timeUTC); 
    sIndx = obsQ.stationId==stationId; 
    verObs(:,t) = obsQ.data(sIndx,tIndx)'; 
end 

Develop a cross-validated climatology forecast 

We develop a climatology by sampling sequences from historical observations at ordinal dates 
close to the forecast dates. In this case we have enough observations to generate a large 
ensemble. It is possible to verify against a smaller ensemble, if need be, but care needs to be 
taken when comparing forecasts with different ensemble sizes. 

We now sample observed streamflows from similar ordinal dates but from years other than 
that for which the forecast is generated. This can take around 30 seconds for 1 month of 
forecasts. 

% Allocate memory 
climFct = zeros(size(newFctQ.data,[1 3 4]))*nan; 
 
% Build climatology from observations 
nanIndx = ~isnan(obsQ.data(obsQ.stationId==stationId,:)); 
tSt = find(nanIndx' & month(obsQ.timeUTC)==1 & day(obsQ.timeUTC)==1 ... 
    & hour(obsQ.timeUTC)==0,1,"first"); 
tEnd = find(nanIndx' & month(obsQ.timeUTC)==12 & day(obsQ.timeUTC)==31 ... 
    & hour(obsQ.timeUTC)==23,1,"last"); 
obsYrs = unique(year(obsQ.timeUTC(tSt:tEnd))); 
fctYrs = unique(year(newFctQ.timeUTC)); 
climYrs = obsYrs(~ismember(obsYrs,fctYrs)); 
ensSize = length(newFctQ.realization); 
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noSampleDates = ceil(ensSize/length(climYrs)); 
noLeadTimes = size(newFctQ.leadTimeUTC,1); 
sIndx = obsQ.stationId == stationId; 
 
w = waitbar(0,'Sampling obs...','Name','Generate climatology forecast'); 
for f = 1:length(newFctQ.timeUTC) 
    % Set up ensemble member counter 
    waitbar(f/length(newFctQ.timeUTC)); 
    ensNo = 1; 
    continueSampling = true; 
    % Fill each ensemble member individually 
    while ensNo<=ensSize 
        % Loop through years from which climatology is to be built 
        for y = 1:length(climYrs) 
            yr = climYrs(y); 
            if yr == climYrs(end) && ensNo<(ensSize-noSampleDates) 
                % This is needed in the case of ensemble members knocked 
                % out for null values 
                noSampleDates = ensSize-ensNo+1; 
            end 
            stSampDate = max(datetime(yr,month(newFctQ.leadTimeUTC(1,f)),... 
                day(newFctQ.leadTimeUTC(1,f)),hour(newFctQ.leadTimeUTC(1,f)),... 
                minute(newFctQ.leadTimeUTC(1,f)),second(newFctQ.leadTimeUTC(1,f)))... 
                -days(floor(noSampleDates/2)), obsQ.timeUTC(1)); 
            if yr == climYrs(end) 
                switch leadTimeUnits 
                    case 'hours' 
                        sampDates = min(stSampDate,obsQ.timeUTC(end) ... 
                            - days(noSampleDates + ceil(days(hours(noLeadTimes))))); 
                    case 'days' 
                        sampDates = min(stSampDate,obsQ.timeUTC(end) ... 
                            - days(noSampleDates + noLeadTimes)); 
                    case 'months' 
                        sampDates = min(stSampDate,obsQ.timeUTC(end) ... 
                            - (days(noSampleDates) + calMonths(noLeadTimes))); 
                end 
            end 
            for t = 1:noSampleDates 
                switch leadTimeUnits 
                    case 'hours' 
                        sampDates = stSampDate+days(t-1):hours(1): ... 
                            stSampDate+days(t-1)+hours(noLeadTimes-1); 
                    case 'days' 
                        sampDates = stSampDate+days(t-1):days(1): ...  
                            stSampDate+days(t-1)+days(noLeadTimes-1); 
                    case 'months' 
                        sampDates = stSampDate+days(t-1):calMonths(1): ...  
                            stSampDate+days(t-1)+calmonths(noLeadTimes-1); 
                end 
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                [~,tIndx] = ismember(sampDates,obsQ.timeUTC); 
                ensDat = obsQ.data(sIndx,tIndx); 
 
                if any(isnan(ensDat)) 
                    % We do not want climatology to have null values 
                    continue 
                end 
 
                climFct(:,ensNo,f) = ensDat; 
                ensNo = ensNo+1; 
                if ensNo>ensSize 
                    continueSampling = false; 
                    break 
                end 
                if climYrs(y) == climYrs(end) && t == noSampleDates 
                    warning('some ensemble members have not been filled') 
                    continueSampling = false; 
                end 
 
            end 
            if ensNo>ensSize 
                break 
            end 
        end 
        if ~continueSampling 
            break 
        end 
    end 
end 
waitbar(1); 
close(w) 

Measure forecast accuracy with continuous ranked probability score (CRPS) 

The continuous ranked probability score (CRPS) is one of the most popular error scores for 
ensemble forecasts. It is strictly proper (Gneiting and Raftery, 2007), can be decomposed to 
understand reliability, resolution and uncertainty (Hersbach, 2000), and is in the units of 
measurement. Very usefully, CRPS collapses to the mean absolute error (MAE) for 
deterministic forecasts, providing a way to compare deterministic forecasts with ensemble 
forecasts. 

In this case we use CRPS to compare the accuracy of our two forecasting systems, 'new' and 
'old', at each lead time. CRPS values are calculated for every forecast with: 

 𝑈𝑈(𝑀𝑀) = ∫ �𝑃𝑃(𝑀𝑀,𝑥𝑥) − 𝑆𝑆(𝑓𝑓𝑟𝑟(𝑀𝑀) ≤ 𝑥𝑥)�2∞
−∞ 𝑜𝑜𝑥𝑥   (51) 

where F(t,[ ]) is the cumulative distribution function (CDF) of the forecast ensemble at time t, 
qo(t) is the observation and H is the Heaviside step function. We calculate the average CRPS 
with: 

𝑈𝑈 = 1
𝑇𝑇
∑ 𝑈𝑈(𝑀𝑀)𝑇𝑇
𝑓𝑓=1      (52) 
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To understand the uncertainty in this calculation, we bootstrap the averaging with 100 repeats, 
allowing us to present [0.05 0.95] confidence intervals. 

In addition, we present the forecast accuracy as a skill score in comparison to a climatology 
forecast by: 

𝑈𝑈𝑓𝑓𝑘𝑘𝑖𝑖𝑙𝑙𝑙𝑙 = 1 − 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓
𝐶𝐶𝑟𝑟𝑟𝑟𝑓𝑓

     (53) 

where 𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓 is the mean CRPS for the forecast we are testing, and 𝑈𝑈𝑟𝑟𝑟𝑟𝑓𝑓 is the CRPS of our 
reference forecast, in this case climatology. We also estimate confidence in this calculation by 
bootstrapping with 100 repeats. 

Calculate errors by lead time and bootstrap 

% Define number of bootstrap repeats and confidence intervals 
bsRepeats = 100; 
 
% Preallocate memory 
crpsNew = zeros(size(newFctQ.data,[1 4]))*nan; 
crpsOld = crpsNew; 
crpsClim = crpsNew; 
meanCrpsNew = zeros(size(newFctQ.data,1),bsRepeats)*nan; 
meanCrpsOld = meanCrpsNew; 
meanCrpsClim = meanCrpsNew; 
 
% Calculate errors 
for i = 1:size(newFctQ.data,1) 
    [~,crpsNew(i,:)] = crps(squeeze(newFctQ.data(i,newFctQ.stationId==stationId,:,:)),... 
        verObs(i,:)); 
    [~,crpsOld(i,:)] = crps(squeeze(oldFctQ.data(i,newFctQ.stationId==stationId,:,:)),... 
        verObs(i,:)); 
    [~,crpsClim(i,:)] = crps(squeeze(climFct(i,:,:)),verObs(i,:)); 
end 
 
% Bootstrap average errors 
for b = 1:bsRepeats 
    randIntegers = randi(size(crpsNew,2),1,size(crpsNew,2)); 
    meanCrpsNew(:,b) = mean(crpsNew(:,randIntegers),2); 
    meanCrpsOld(:,b) = mean(crpsOld(:,randIntegers),2); 
    meanCrpsClim(:,b) = mean(crpsClim(:,randIntegers),2); 
end 
 
% Calculate skill against a climatological forecast 
crpsSkillNew = 1-(meanCrpsNew./meanCrpsClim); 
crpsSkillOld = 1-(meanCrpsOld./meanCrpsClim); 

Plot forecast errors with lead time 

% Specify confidence intervals for plotting 
confIntPrctl = [5 50 95]; 
 



163 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 

% Set up variables to plot 

crpsNewPlot = prctile(meanCrpsNew,confIntPrctl,2); 

crpsOldPlot = prctile(meanCrpsOld,confIntPrctl,2); 

 

crpsSkillNewPlot = prctile(crpsSkillNew*100,confIntPrctl,2); 

crpsSkillOldPlot = prctile(crpsSkillOld*100,confIntPrctl,2); 

 

% Plot errors 

figure(1); clf; 

colOrder = get(gca,'colorOrder'); 

 

xvals = 1:size(meanCrpsNew,1); 

ciplot(crpsNewPlot(:,1),crpsNewPlot(:,end),xvals,'color',colOrder(1,:)); 

hold on; 

plot(xvals,crpsNewPlot(:,2),'color',colOrder(1,:)) 

 

ciplot(crpsOldPlot(:,1),crpsOldPlot(:,end),xvals,'color',colOrder(2,:)); 

hold on; 

plot(xvals,crpsOldPlot(:,2),'color',colOrder(2,:)) 

 

% Add labels 

xlabel(sprintf('lead time (%s)',leadTimeUnits)) 

ylabel(sprintf('CRPS (%s)',ncreadatt(obsNc,'q_obs','units'))) 

title('Forecast errors') 

 

% Add annotation to help with interpretation of plot 

xl = get(gca,'xlim'); 

yl = get(gca,'ylim'); 

os = 0.03; 

pos = get(gca,'position'); 

annotation('arrow',[pos(1)+pos(3)+os*pos(3) pos(1)+pos(3)+os*pos(3)],... 

    [pos(2)+pos(4) pos(2)]); 

text(xl(end)+(os+0.01)*diff(xl),yl(1)+diff(yl)*0.5,sprintf('Better')); 

 

% Add legend 

ch = get(gca,'Children'); 

lh = legend(ch(end-1:-2:1),'New method','Old method'); 

lh.Location = 'northwest'; 

Figure 65 shows the forecast error against the lead time. We can see that CRPS increases with 
lead time for both new and old forecasting systems, which reduces accuracy. 
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Figure 65. Mean CRPS of old (red) and new (blue) forecasts versus lead time 

Plot skill with lead time 

% Plot skill 

figure(2); clf; 

colOrder = get(gca,'colorOrder'); 

 

xvals = 1:size(meanCrpsNew,1); 

ciplot(crpsSkillNewPlot(:,1),crpsSkillNewPlot(:,end),xvals,'color',colOrder(1,:)); 

hold on; 

plot(xvals,crpsSkillNewPlot(:,2),'color',colOrder(1,:)) 

 

ciplot(crpsSkillOldPlot(:,1),crpsSkillOldPlot(:,end),xvals,'color',colOrder(2,:)); 

hold on; 

plot(xvals,crpsSkillOldPlot(:,2),'color',colOrder(2,:)) 

 

% Add labels 

xlabel(sprintf('lead time (%s)',leadTimeUnits)) 

ylabel('CRPS skill (%)') 

title('Forecast skill compared to climatology') 

 

% Add annotation to help with interpretation of plot 

xl = get(gca,'xlim'); 

yl = get(gca,'ylim'); 

os = 0.03; 

pos = get(gca,'position'); 



165 GUIDELINES ON THE VERIFICATION OF HYDROLOGICAL FORECASTS 

annotation('arrow',[pos(1)+pos(3)+os*pos(3) pos(1)+pos(3)+os*pos(3)],... 

    [pos(2) pos(2)+pos(4)]); 

text(xl(end)+(os+0.01)*diff(xl),yl(1)+diff(yl)*0.5,sprintf('Better')); 

 

% Add legend 

ch = get(gca,'children'); 

lh = legend(ch(end-1:-2:1),'New method','Old method'); 

lh.Location = 'northeast'; 

 
Figure 66. CRPSS in reference to climatology of old (red) and new (blue) forecasts 

versus lead time 

In Figure 66 we can see that the forecasting systems are similarly accurate at most lead times, 
with the median error of the new method slightly larger than that of the old method at longer 
lead times (>~190 hours). CRPS increased with lead time, reflecting the declining influence of 
the autoregressive updating. The skill plot shows that the median skill of the new forecast is 
better than that of the old forecast for lead times of 0–~100 hours, while median skill of the 
old forecast is greater with lead times of >~190 hours. Both forecasting systems are positively 
skilful for the entire forecast period. 

Assessing reliability with probability integral transform (PIT) uniformity in 
ephemeral streams 

Reliability can be formally assessed by checking the uniformity of probability integral transform 
(PIT) values: 

 (54) 

where F((t,[ ]) is the cumulative distribution function (CDF) of the forecast ensemble at time t, 
qo(t) is the observation and U(0,1) is a random number drawn from the uniform distribution on 
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the range of (0, 1). The treatment at qo(t) = 0 is required to ensure PIT values can be 
uniformly distributed even in the presence of zero values. When PIT values are generated in 
this way at qo(t), they are usually referred to as “pseudo PIT” values.  

PIT values can be checked for uniformity by plotting them against a standard uniform variate 
(Figure 67), allowing us to assess the reliability of the ensemble. These plots are closely 
related to rank histograms/Talagrand diagrams (they are essentially slightly different 
representations of the same metric), but have the advantage of being suitable for assessing 
small numbers of forecasts. Histograms can be more difficult to construct and interpret with 
few data points. If forecasts are perfectly reliable, PIT values track the diagonal. Deviations 
from the diagonal can be interpreted as follows: 

%% Generate and plot PIT interpretation plot 
nFct = 5000; 
nEns = 1000; 
obs1 = randn(nFct,1)+100; 
fct1 = randn(nEns,nFct)+100.75; 
fct2 = randn(nEns,nFct)+99.25; 
fct3 = randn(nEns,nFct)*0.5+100; 
fct4 = randn(nEns,nFct)*2+100; 
 
[PITv1,R1] = pit_ecdf(obs1,fct1); 
[PITv2,R2] = pit_ecdf(obs1,fct2); 
[PITv3,R3] = pit_ecdf(obs1,fct3); 
[PITv4,R4] = pit_ecdf(obs1,fct4); 
 
% Plot 
figure(3); clf 
col = get(gca,'colororder'); 
ms = 4; 
 
plot(R1,PITv1,'o','markerfacecolor',col(1,:),'markersize',ms) 
hold on; 
plot(R2,PITv2,'o','markerfacecolor',col(2,:),'markersize',ms) 
plot(R3,PITv3,'o','markerfacecolor',col(3,:),'markersize',ms) 
plot(R4,PITv4,'o','markerfacecolor',col(4,:),'markersize',ms) 
line([0 1], [0 1],'color','k') 
 
set(gca,'plotboxaspectratio',[1 1 1],'layer','top') 
 
% Add labels 
ylabel('PIT') 
xlabel('Std. Uniform Variate') 
title('How to interpret PIT-uniform probability plots') 
 
% Add legend 
ch = get(gca,'children'); 
lh1 = legend(ch([5 4 1 3 2]),'Overprediction','Underprediction',... 
    'Perfectly reliable','Ensemble too narrow','Ensemble too wide'); 
lh1.Location = "southoutside"; 
lh1.Orientation = "vertical"; 
lh1.NumColumns = 2; 
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Figure 67. Interpretation of PIT plots 

The significance of the deviation of PIT values from uniformity can be checked with 
Kolmogorov–Smirnoff significance bands. In this case, we set the significance to level to 5%. 
Note that the significance calculations assume independence between all forecast–observation 
pairs. Even though we are stratifying our PIT calculations by lead time, it is unlikely that all 
pairs are independent, because forecasts are issued twice per day. That is, streamflow data 
points 12 hours apart are likely to be correlated to some degree. For simplicity, we will ignore 
this problem here. It can be addressed by calculating PIT values only from independent values 
(for example, by only calculating PIT values from every 10th (or 20th) forecast) before 
significance tests are applied. This requires more than one month of forecasts to ensure robust 
metrics. 

Calculate and plot PIT uniformity and significance 

We will select four lead times – 1 , 48 , 96 and 216 hours – to see how reliability varies with 
lead time. In these plots we will identify pseudo-PIT values from conventionally calculated PIT 
to illustrate the importance of accounting for zero flow. 

Calculate PIT 

% Preallocate memory 
pitValsNew = zeros(size(newFctQ.data,[1 4]))*nan; 
pitValsOld = pitValsNew; 
  
rValsNew = pitValsNew; 
rValsOld = pitValsNew; 
  
ksXnew = zeros([size(newFctQ.data,1) 2 2])*nan; 
ksYnew = ksXnew; 
  
ksXold = ksXnew; 
ksYold = ksXnew; 
  
pseudIndxNew = false(size(pitValsNew)); 
pseudIndxOld = pseudIndxNew; 
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% Calculate PIT 
for i = 1:size(newFctQ.data,1) 
    [pitValsNew(i,:),rValsNew(i,:),pseudIndxNew(i,:),ksXnew(i,:,:),ksYnew(i,:,:)] = ... 
        pit_ecdf(verObs(i,:),squeeze(newFctQ.data(i,newFctQ.stationId==stationId,:,:))); 
    [pitValsOld(i,:),rValsOld(i,:),pseudIndxOld(i,:),ksXold(i,:,:),ksYold(i,:,:)] = ... 
        pit_ecdf(verObs(i,:),squeeze(oldFctQ.data(i,newFctQ.stationId==stationId,:,:))); 
end 

Plot PIT uniformity 

plotLead = [1 48 96 216]; 
figure(4); clf; 
colOrder = get(gca,'colorOrder'); 
sp = nan(size(plotLead)); 
for p = 1:length(plotLead) 
    tIndx = plotLead(p); 
    p1 = p; if p>2; p1 = p+1; end 
    sp(p) = subplot(2,ceil(length(plotLead)/2)+1,p1); 
    plot(rValsNew(tIndx,~pseudIndxNew(i,:)), pitValsNew(tIndx,~pseudIndxNew(i,:)),... 
        '.','color',colOrder(1,:)); 
    hold on; 
    plot(rValsNew(tIndx,pseudIndxNew(i,:)),pitValsNew(tIndx,pseudIndxNew(i,:)),... 
        '+','color',colOrder(1,:)); 
    plot(rValsOld(tIndx,~pseudIndxOld(i,:)), pitValsOld(tIndx,~pseudIndxOld(i,:)),... 
        '.','color',colOrder(2,:)); 
    plot(rValsOld(tIndx,pseudIndxOld(i,:)),pitValsOld(tIndx,pseudIndxOld(i,:)),... 
        '+','color',colOrder(2,:)); 
    plot(squeeze(ksXnew(i,:,:)),squeeze(ksYnew(i,:,:)),':k'); 
    line; xlim([0 1]); ylim([0 1]); 
    set(gca,'plotboxaspectratio',[1 1 1]) 
    title(sprintf('lead %d h',plotLead(p))) 
    if p == length(plotLead) 
        ch = get(gca,'children'); 
        lh = legend(ch([end:-1:end-3 2]),'New PIT','New pseudo-PIT','Old PIT',... 
            'Old pseudo-PIT','KS significance','orientation','vertical'); 
        pos = get(sp(end),'InnerPosition'); 
        os = 1.1; 
        lh.Position = [pos(1)+pos(3)*os pos(2)+(os-1)*pos(4) ... 
            lh.Position(3) lh.Position(4)]; 
    end 
    if mod(p,2)==1 
        ylabel('PIT') 
    end 
    if p>2 
        xlabel('Std. Unif. Var.') 
    end 
end 
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Figure 68. PIT plots of old (red) and new (blue) forecasts at various lead times with 

Kolmogorov–Smirnoff significance bands 

We can see from the plots in Figure 68 that the forecasting systems produce different levels of 
reliability, and also that reliability varies substantially with lead time. Forecasts from the new 
system are largely reliable at lead times of 48 hours, but are positively biased at 1 hour, and 
become increasingly overconfident at longer lead times, as shown by the plots of lead times of 
96 and 216 hours. Forecasts from the old system tend to be positively biased at lead times of 
1, 48 and 96 hours. The old forecasting system achieves its best reliability at lead 216 hours 
but is slightly overconfident. 

PIT uniformity summary statistics 

It is often convenient to summarize the uniformity of PIT values (for example, to summarize 
reliability at different lead times), as we will do below. A popular statistic to do this is Renard 
et al.’s (2010) α-index. This calculates the deviation of PIT values from the ideal theoretical 
uniform distribution, given by:  

𝛼𝛼 = 1 − 2
𝑇𝑇
∑ |𝑝𝑝(𝑀𝑀) − 𝑝𝑝𝑈𝑈(𝑀𝑀)|𝑇𝑇
𝑓𝑓=1  (55) 

Where PU(t) is the theoretical value corresponding to p(t) (that is, the value drawn from the 
standard uniform variate in Figure 68). α ranges from 1 (perfectly reliable) to ∞. As with 
CRPS, we will bootstrap this calculation.  

The α-index effectively calculates deviation from the diagonal in Figure 68. This is somewhat 
reductive, as it does not give any information on whether poor reliability is caused by bias or 
incorrectly specified ensemble spread. An alternative pair of indices is the β-score and β-bias 
by Keller and Hense (2011). This diagnostic fits parametric distributions to rank histograms to 
determine the degree to which deficiencies in ensemble spread (β-score) or bias (β-bias) 
contribute to poor reliability. This method is more complex to describe, and we refer the reader 
to the original paper for details. The β-score ranges from –∞ to ∞. Values near zero indicate 
more reliable forecasts, with values >0 indicating under-confidence (ensemble is too wide) and 
values <0 indicating overconfidence (ensemble is too narrow). β-bias also ranges from –∞ to 
∞. Values near zero indicate more unbiased forecasts, with values >0 indicating positive 
biases and values <0 indicating negative biases.  
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Calculate α-index with bootstrapping 

% Set number of bootstrap repeats 
bsRepeats = 100; 
  
% Preallocate memory 
alphaNew = zeros(size(pitValsNew,1),bsRepeats); 
alphaOld = alphaNew; 
  
% Bootstrap average errors 
for i = 1:size(pitValsNew,1) 
    for b = 1:bsRepeats 
        randIntegers = randi(size(pitValsNew,2),1,size(pitValsNew,2)); 
  
        na = length(pitValsNew(i,randIntegers)); 
        alphaPrime = sum(abs(pitValsNew(i,randIntegers) - rValsNew(i,randIntegers)))/na; 
        alphaNew(i,b) = 1-2*alphaPrime; 
  
        na = length(pitValsNew(i,randIntegers)); 
        alphaPrime = sum(abs(pitValsOld(i,randIntegers) - rValsOld(i,randIntegers)))/na; 
        alphaOld(i,b) = 1-2*alphaPrime; 
    end 
end 

Plot α-index with lead time 

% Specify confidence intervals for plotting 
confIntPrctl = [5 50 95]; 
  
% Set up variables to plot 
alphaNewPlot = prctile(alphaNew,confIntPrctl,2); 
alphaOldPlot = prctile(alphaOld,confIntPrctl,2); 
  
% Plot 
figure(5); clf; 
colOrder = get(gca,'colorOrder'); 
  
xvals = 1:size(pitValsNew,1); 
ciplot(alphaNewPlot(:,1),alphaNewPlot(:,end),xvals,'color',colOrder(1,:)); 
hold on; 
plot(xvals,alphaNewPlot(:,2),'color',colOrder(1,:)) 
  
ciplot(alphaOldPlot(:,1),alphaOldPlot(:,end),xvals,'color',colOrder(2,:)); 
hold on; 
plot(xvals,alphaOldPlot(:,2),'color',colOrder(2,:)) 
  
% Add labels 
xlabel(sprintf('lead time (%s)',leadTimeUnits)) 
yl = ylabel('$$\alpha$$-index'); 
yl.Interpreter = 'latex'; 
title('Forecast reliability') 
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% Add annotation to help with interpretation of plot 
xl = get(gca,'xlim'); 
yl = get(gca,'ylim'); 
os = 0.03; 
pos = get(gca,'position'); 
annotation('arrow',[pos(1)+pos(3)+os*pos(3) pos(1)+pos(3)+os*pos(3)],... 
    [pos(2) pos(2)+pos(4)]); 
text(xl(end)+(os+0.01)*diff(xl),yl(1)+diff(yl)*0.5,sprintf('Better')); 
  
% Add legend 
ch = get(gca,'children'); 
lh = legend(ch(end-1:-2:1),'New method','Old method'); 
lh.Location = 'northeast'; 

 
Figure 69. α-index of old (red) and new (blue) forecasts versus lead time 

As we have seen with the PIT-uniform probability plots, forecast reliability varies with lead 
time. For the new forecasting system, the forecasts are quite reliable for the first ~75 hours, 
after which reliability declines (Figure 69). For the old forecasting system, positive biases 
cause poorer reliability than with the new system until lead times of ~150 hours. After this 
point, the new forecasts become increasingly overconfident, leading to less reliable forecasts 
than in the old system. 

Calculate β-score and β-bias 

The β-score and β-bias are calculated on rank histograms. We use PIT values as ranks, but we 
must decide how many “bins” (bars in the histogram) these ranks will be divided into. We 
choose 8 bins, as this would allow 7 forecasts to be grouped in each bin if the histograms are 
totally uniform (as we have 56 forecasts). Calculating the two β metrics involves an 
optimization to fit the parametric β distribution to the shape of the rank histogram. This can be 
a somewhat computationally intensive, and bootstrapping this estimation with 100 repeats can 
take a few minutes. 
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% Set number of bins 
nBin = 8; 
  
% Set number of bootstrap repeats 
bsRepeats = 100; 
  
% Preallocate memory 
betaNew = zeros(2,size(pitValsNew,1),bsRepeats)*nan; 
betaOld = betaNew; 
  
w = waitbar(0,'fitting beta and bootstrapping...','Name','beta score/beta bias'); 
for i = 1:size(pitValsNew,1) 
    for b = 1:bsRepeats 
        waitbar(((i-1)*bsRepeats+b)/(size(pitValsNew,1)*bsRepeats)); 
        randIntegers = randi(size(pitValsNew,2),1,size(pitValsNew,2)); 
         
        [~,~,dumBeta] = compute_betascore(pitValsNew(i,randIntegers),nBin,true); 
        betaNew(1,i,b) = dumBeta.beta_score; 
        betaNew(2,i,b) = dumBeta.beta_bias; 
  
        [~,~,dumBeta] = compute_betascore(pitValsOld(i,randIntegers),nBin,true); 
        betaOld(1,i,b) = dumBeta.beta_score; 
        betaOld(2,i,b) = dumBeta.beta_bias; 
    end 
end 
waitbar(1); 
close(w); 

Plot β-score and β-bias 

% Specify confidence intervals for plotting 
confIntPrctl = [5 50 95]; 
yl = [-2 2]; %ylimits 
  
% Set up variables to plot 
betaScoreNewPlot = prctile(squeeze(betaNew(1,:,:)),confIntPrctl,2); 
betaScoreOldPlot = prctile(squeeze(betaOld(1,:,:)),confIntPrctl,2); 
  
betaBiasNewPlot = prctile(squeeze(betaNew(2,:,:)),confIntPrctl,2); 
betaBiasOldPlot = prctile(squeeze(betaOld(2,:,:)),confIntPrctl,2); 
  
% Plot 
figure(6); clf; 
colOrder = get(gca,'colorOrder'); 
  
subplot(2,1,1) 
xvals = 1:size(betaScoreNewPlot,1); 
ciplot(betaScoreNewPlot(:,1),betaScoreNewPlot(:,end),xvals,'color',colOrder(1,:)); 
hold on; 
plot(xvals,betaScoreNewPlot(:,2),'color',colOrder(1,:)) 
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ciplot(betaScoreOldPlot(:,1),betaScoreOldPlot(:,end),xvals,'color',colOrder(2,:)); 
hold on; 
plot(xvals,betaScoreOldPlot(:,2),'color',colOrder(2,:)) 
ylim(yl) 
xl = get(gca,'xlim'); 
line(xl,[0 0],'color','k') 
  
% Add labels 
yl = ylabel('$$\beta$$-score'); 
yl.Interpreter = 'latex'; 
title('Appropriateness of ensemble spread') 
  
% Add annotation to help with interpretation of plot 
xl = get(gca,'xlim'); 
yl = get(gca,'ylim'); 
os = 0.03; 
pos = get(gca,'position'); 
annotation('arrow',[pos(1)+pos(3)+os*pos(3) pos(1)+pos(3)+os*pos(3)],... 
    [pos(2)+pos(4)/2 pos(2)+pos(4)]); 
text(xl(end)+(os+0.01)*diff(xl),yl(1)+diff(yl)*0.75,sprintf('under-\nconfident')); 
  
annotation('arrow',[pos(1)+pos(3)+os*pos(3) pos(1)+pos(3)+os*pos(3)],... 
    [pos(2)+pos(4)/2 pos(2)]); 
text(xl(end)+(os+0.01)*diff(xl),yl(1)+diff(yl)*0.25,sprintf('over-\nconfident')); 
  
% Add legend 
ch = get(gca,'children'); 
lh = legend(ch([end-1 end-3]),'New method','Old method'); 
lh.Location = 'northeast'; 
  
subplot(2,1,2) 
ciplot(betaBiasNewPlot(:,1),betaBiasNewPlot(:,end),xvals,'color',colOrder(1,:)); 
hold on; 
plot(xvals,betaBiasNewPlot(:,2),'color',colOrder(1,:)) 
  
ciplot(betaBiasOldPlot(:,1),betaBiasOldPlot(:,end),xvals,'color',colOrder(2,:)); 
hold on; 
plot(xvals,betaBiasOldPlot(:,2),'color',colOrder(2,:)) 
ylim(yl) 
xl = get(gca,'xlim'); 
line(xl,[0 0],'color','k') 
  
% Add labels 
xlabel(sprintf('lead time (%s)',leadTimeUnits)) 
yl = ylabel('$$\beta$$-bias'); 
yl.Interpreter = 'latex'; 
title('Bias of ensemble spread') 
  
% Add annotation to help with interpretation of plot 
xl = get(gca,'xlim'); 
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yl = get(gca,'ylim'); 
os = 0.03; 
pos = get(gca,'position'); 
annotation('arrow',[pos(1)+pos(3)+os*pos(3) pos(1)+pos(3)+os*pos(3)],... 
    [pos(2)+pos(4)/2 pos(2)+pos(4)]); 
text(xl(end)+(os+0.01)*diff(xl),yl(1)+diff(yl)*0.75,sprintf('+ve bias')); 
  
annotation('arrow',[pos(1)+pos(3)+os*pos(3) pos(1)+pos(3)+os*pos(3)],... 
    [pos(2)+pos(4)/2 pos(2)]); 
text(xl(end)+(os+0.01)*diff(xl),yl(1)+diff(yl)*0.25,sprintf('-ve bias')); 

 
Figure 70. β-score (top) and β-bias (bottom) of old (red) and new (blue) forecasts 

versus lead time 

We gain additional insights from the plot in Figure 70, consistent with our inspection of the 
PIT-uniform probability plots above. We can see that both methods exhibit overconfidence for 
lead times >~50 hours. Overconfidence is the major fault with the new method, particularly at 
lead times >150 hours, where the median β-score drops below the axis of the chart. β-bias 
values for the new forecasts are close to zero at longer lead times. The old method tends to 
suffer more from positive bias, particularly at earlier lead times. 

Sharpness 

Finally, we wish our forecasts to be as sharp as possible, while still being reliable. Sharpness is 
often expressed as the average width of prediction intervals (AWPI): 
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𝑆𝑆𝐴𝐴𝑃𝑃𝐷𝐷 = 1
𝑇𝑇
∑ �𝑃𝑃−1 �𝑀𝑀, 1 − �1−Δ

2
�� − 𝑃𝑃−1 �𝑀𝑀, �1−Δ

2
���𝑇𝑇

𝑓𝑓=1    (56) 

where F–1(t,[ ]) is the inverse cumulative distribution function (CDF) of the forecast ensemble 
at time t, and Δ is the confidence interval. Lower values are better. Choosing a single interval 
is somewhat reductive, as AWPI can be sensitive to the interval chosen. We therefore choose 
three intervals: Δ = 50% (that is, the interquartile range), Δ = 80% and Δ = 90%. As with the 
α-index and CRPS, it is possible to bootstrap the calculation to offer confidence intervals in the 
score. 

We wish our forecasts to be at least as sharp as climatology and accordingly calculate an AWPI 
ratio as a skill score: 

𝑆𝑆𝐴𝐴𝑃𝑃𝐷𝐷 𝑅𝑅𝐵𝐵𝑀𝑀𝑆𝑆𝑆𝑆 = 1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐹𝐹𝑓𝑓𝑓𝑓
𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝑅𝑅𝑟𝑟𝑓𝑓

     (57) 

where AWPIFct is the AWPI of the forecast being assessed, and AWPIRef is the AWPI of our 
climatology reference forecast. The AWPI ratio ranges from 1 (perfectly sharp) to –∞. 

Calculate and bootstrap average width of prediction intervals (AWPI) 

% Define number of bootstrap repeats and confidence intervals 
bsRepeats = 100; 
predInt = [50 80 90]; 
  
% Preallocate memory 
wpiNew = zeros(size(newFctQ.data,1),size(newFctQ.data,4),length(predInt))*nan; 
wpiOld = wpiNew; 
wpiClim = wpiNew; 
  
awpiNew = zeros(size(newFctQ.data,1),bsRepeats,length(predInt))*nan; 
awpiOld = awpiNew; 
awpiClim = awpiNew; 
  
% Calculate AWPI 
for p = 1:length(predInt) 
    piPrctl = [100-(100-predInt(p))/2 (100-predInt(p))/2]; 
    wpiNew(:,:,p) = squeeze(prctile(newFctQ.data(:,newFctQ.stationId==stationId,:,:),... 
        piPrctl(1),3)-prctile(newFctQ.data(:,newFctQ.stationId==stationId,:,:),... 
        piPrctl(2),3)); 
    wpiOld(:,:,p) = squeeze(prctile(oldFctQ.data(:,oldFctQ.stationId==stationId,:,:),... 
        piPrctl(1),3)-prctile(oldFctQ.data(:,oldFctQ.stationId==stationId,:,:),... 
        piPrctl(2),3)); 
    wpiClim(:,:,p) = squeeze(prctile(climFct,piPrctl(1),2)-prctile(climFct,... 
        piPrctl(2),2)); 
end 
  
for b = 1:bsRepeats 
    randIntegers = randi(size(wpiNew,2),1,size(wpiNew,2)); 
    awpiNew(:,b,:) = mean(wpiNew(:,randIntegers,:),2); 
    awpiOld(:,b,:) = mean(wpiOld(:,randIntegers,:),2); 
    awpiClim(:,b,:) = mean(wpiClim(:,randIntegers,:),2); 
end 
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% Calculate skill against a climatolology forecast 
awpiRatioNew = 1-(awpiNew./awpiClim); 
awpiRatioOld = 1-(awpiOld./awpiClim); 

Plot AWPI with lead time 

% Specify confidence intervals for plotting 
confIntPrctl = [5 50 95]; 
  
% Set up variables to plot 
awpiNewPlot = squeeze(prctile(awpiNew,confIntPrctl,2)); 
awpiOldPlot = squeeze(prctile(awpiOld,confIntPrctl,2)); 
  
% Plot AWPI 
figure(7); clf; 
colOrder = get(gca,'colorOrder'); 
  
xvals = 1:size(awpiNew,1); 
  
for p = 1:length(predInt) 
    subplot(length(predInt),1,p) 
  
    ciplot(awpiNewPlot(:,1,p),awpiNewPlot(:,end,p),xvals,'color',colOrder(1,:)); 
    hold on; 
    plot(xvals,awpiNewPlot(:,2,p),'color',colOrder(1,:)) 
 
ciplot(awpiOldPlot(:,1,p),awpiOldPlot(:,end,p),xvals,'color',colOrder(2,:)); 
    hold on; 
    plot(xvals,awpiOldPlot(:,2,p),'color',colOrder(2,:)) 
  
    % Add labels 
    if p == length(predInt) 
        xlabel(sprintf('lead time (%s)',leadTimeUnits)) 
    end 
    ylabel(sprintf('AWPI (%s)',ncreadatt(obsNc,'q_obs','units'))) 
    title(sprintf('AWPI of %d%% interval',predInt(p))) 
  
    % Add annotation to help with interpretation of plot 
    xl = get(gca,'xlim'); 
    yl = get(gca,'ylim'); 
    os = 0.03; 
    pos = get(gca,'position'); 
    annotation('arrow',[pos(1)+pos(3)+os*pos(3) pos(1)+pos(3)+os*pos(3)],... 
        [pos(2)+pos(4) pos(2)]); 
    text(xl(end)+(os+0.01)*diff(xl),yl(1)+diff(yl)*0.5,sprintf('Better')); 
  
    if p ==1 
        % Add legend 
        ch = get(gca,'Children'); 
        lh = legend(ch(end-1:-2:1),'New method','Old method'); 
        lh.Location = 'northwest'; 
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    end 
end 

 
Figure 71. AWPI of old (red) and new (blue) forecasts versus lead time at 50% 

(top), 80% (middle) and 90% (bottom) confidence intervals 

In Figure 71 we can see that the new forecasting system is generally sharper than the old 
forecasting system, particularly at longer lead times. This holds for all three prediction 
intervals tested. However, this comes at the expense of reliability at longer lead times 
(>~150 hours). Sharpness without reliability is highly undesirable: if it were not, we would 
reward deterministic forecasts.  

Plot AWPI ratio 

% Specify confidence intervals for plotting 
confIntPrctl = [5 50 95]; 
  
% Set up variables to plot 
awpiRatioNewPlot = squeeze(prctile(awpiRatioNew,confIntPrctl,2))*100; 
awpiRatioOldPlot = squeeze(prctile(awpiRatioOld,confIntPrctl,2))*100; 
  
% Plot AWPI ratio 
figure(8); clf; 
colOrder = get(gca,'colorOrder'); 
  
xvals = 1:size(meanCrpsNew,1); 
  
for p = 1:length(predInt) 
    subplot(length(predInt),1,p) 
    ciplot(awpiRatioNewPlot(:,1,p),awpiRatioNewPlot(:,end,p),xvals,... 
        'color',colOrder(1,:)); 
    hold on; 
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    plot(xvals,awpiRatioNewPlot(:,2,p),'color',colOrder(1,:)) 
  
    ciplot(awpiRatioOldPlot(:,1,p),awpiRatioOldPlot(:,end,p),xvals,... 
        'color',colOrder(2,:)); 
    hold on; 
    plot(xvals,awpiRatioOldPlot(:,2,p),'color',colOrder(2,:)) 
    ylim([-100 100]) 
    xl = get(gca,'xlim'); 
    line(xl,[0 0],'color','k') 
  
    % Add labels 
    if p == length(predInt) 
        xlabel(sprintf('lead time (%s)',leadTimeUnits)) 
    end 
    ylabel('AWPI ratio (%)') 
    title(sprintf('AWPI Ratio for %d%% interval',predInt(p))) 
  
    % Add annotation to help with interpretation of plot 
    xl = get(gca,'xlim'); 
    yl = get(gca,'ylim'); 
    os = 0.03; 
    pos = get(gca,'position'); 
    annotation('arrow',[pos(1)+pos(3)+os*pos(3) pos(1)+pos(3)+os*pos(3)],... 
        [pos(2)+pos(4)/2 pos(2)+pos(4)]); 
    text(xl(end)+(os+0.01)*diff(xl),yl(1)+diff(yl)*0.75,sprintf('Sharp')); 
  
    annotation('arrow',[pos(1)+pos(3)+os*pos(3) pos(1)+pos(3)+os*pos(3)],... 
        [pos(2)+pos(4)/2 pos(2)]); 
    text(xl(end)+(os+0.01)*diff(xl),yl(1)+diff(yl)*0.25,sprintf('Not\nsharp')); 
  
    % Add legend 
    if p ==1 
        ch = get(gca,'children'); 
        lh = legend(ch([end-1 end-3]),'New method','Old method'); 
        lh.Location = 'southwest'; 
    end 
end 

The new method produces forecasts that are largely sharper than climatology for all lead times 
(Figure 72). The old method becomes less sharp than climatology after lead times of ~140–
170 hours, depending on choice of prediction interval. Once again, however, the sharpness of 
the new forecasting system at longer lead times comes at the expense of reliability. 
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Figure 72. Same as Figure 71 but for AWPI ratio 
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APPENDIX B. DISTRIBUTIONS-ORIENTED APPROACH  

Murphy and Winkler (1987) introduced a general verification framework referred to as the 
distributions-oriented (DO) approach in which the forecast and the verifying observation are 
treated as random variables and each forecast–observation pair is assumed to be independent 
of all other pairs and identically distributed (IID). The IID assumption means that, for 
verification, one only needs to describe a single joint relationship between the two random 
variables representing the forecast and the observation. The purpose of this appendix is to 
provide mathematical descriptions of the above relationship and the attendant concepts and 
definitions using basic probability theory for engineers (Drake, 1967; Benjamin and 
Cornell, 1970). Hence, unlike in the main text, estimation of statistical quantities or statistical 
inferences are not of concern in this appendix. 

B.1 Joint, conditional and marginal probability distributions 

Let X and Y be random variables representing the forecast and the observation of the variable 
of interest, and x and y denote the experimental values, or outcomes, that X and Y may take 
on, respectively. The probabilistic relationship between the forecast, X, and the observation, Y, 
is described wholly by their joint, or bivariate, probability density function (PDF), fX,Y(x,y), for 
continuous random variables, and probability mass function (PMF), pX,Y(x,y), for discrete 
random variables. The variables of interest for hydrological verification may be continuous, 
discrete or of mixed type. To aid intuitive understanding, X and Y are treated in this appendix 
as discrete random variables with little loss of generality. The only notational difference is that, 
for continuous variables, integration replaces summation. 

The joint cumulative distribution function (CDF) of X and Y, FX≤,Y≤(x,y) is the cumulative sum of 
the probability masses in the joint PMF: 

𝑃𝑃𝑋𝑋≤,𝑌𝑌≤(𝑥𝑥, 𝑦𝑦) = Pr[𝑋𝑋 ≤ 𝑥𝑥,𝑌𝑌 ≤ 𝑦𝑦] = Σ𝑦𝑦𝑜𝑜≤𝑦𝑦Σ𝑥𝑥𝑜𝑜≤𝑥𝑥 𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥𝑟𝑟 , 𝑦𝑦𝑟𝑟) (58) 

where Pr[ ] denotes the probability that the event bracketed may occur. Note in Equation 58 
that the summation is only over the experimental values less than or equal to the upper limits, 
x and y, and xo and yo are dummy variables. The joint PMF may be written as a product of 
marginal and conditional PMFs (Drake, 1967; Benjamin and Cornell, 1970): 

 pX,Y(x,y)= pY|X(y|x) pX(x)= pX|Y(x|y) pY(y) (59) 

The first equality in Equation 59, which factors out the conditional PMF of observation given 
forecast, pY|X(y|x), is referred to as the calibration–refinement (CR) factorization in the 
verification literature. The second equality in Equation 59, which factors out the conditional 
PMF of forecast given observation, pX|Y(x|y), is referred to as the likelihood–base rate (LBR) 
factorization. The marginal PMF of the forecast, pX(x), is referred to as the predictive or 
refinement distribution (Wilks, 2011). The marginal PMF of the observation, pY(y), is referred 
to as the base rate or uncertainty distribution. When the random variables are continuous, 
Equation 59 still holds but with the PMFs replaced with the respective PDFs. In the rest of this 
appendix, the term distribution is used to refer to both PMF and PDF for simplicity. 

Figure 73 illustrates the joint, marginal and scaled conditional distributions of discrete forecast 
and observation. The joint distribution pX,Y(x,y) is represented in the large box by the image 
plot for which, the darker the shade is, the larger the probability is. Each small square in the 
image plot represents the probability that the discrete random variables X and Y may take on 
the experimental value, or outcome, x and y, respectively. The histogram at the top of the 
figure represents the marginal distribution of the forecast, pX(x). The histogram to the right of 
the image plot represents the marginal distribution of the observation, pY(y).  
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The vertical column encased in thick solid lines within the image plot represents the conditional 
distribution pY|X(y|xo), where xo is some specific value of x, scaled by a constant pX(xo) in 
accordance with Equation 59. Hence, each vertical strip in the image plot depicts the relative 
likelihood of different outcomes being observed given the specific forecast event, xo. The row 
encased in thick solid lines represents the conditional distribution pX|Y(x|yo), where yo is some 
specific value of y, scaled by a constant pY(yo) in accordance with Equation 59. Hence, each 
horizontal strip in the image plot depicts the relative likelihood of different outcomes being 
forecast given the specific observed event, yo. 

 
Figure 73. Conceptual illustration, for discrete random variables X and Y, of the joint 

distribution pX,Y(x,y), its marginal distributions, pX(x) and pY(y), and the scaled 
conditional distributions, pX|Y(x|yo) and pY|X(y|xo). 

Source: Adapted from Bradley et al. (2019) 

B.2 Expectations and moments 

Various low-order mathematical moments of the random variables X and Y are used to 
summarize the key attributes of their joint distribution. Following is a partial list of those 
referred to in this publication with their definitions.  

The first moment, which is also referred to as first-order moment, expectation, expected value 
or mean, of the forecast, X, is given by: 

𝜇𝜇𝑋𝑋 = 𝑀𝑀[𝑋𝑋] = Σ𝑥𝑥 𝑥𝑥 𝑝𝑝𝑋𝑋(𝑥𝑥) (60) 

where the summation is for all possible experimental values of X (that is, all events that the 
forecast system can predict). Similarly, the first moment of the observation, Y, is given by: 

𝜇𝜇𝑌𝑌 = 𝑀𝑀[𝑌𝑌] = Σ𝑦𝑦 𝑦𝑦 𝑝𝑝𝑌𝑌(𝑦𝑦) (61) 

where the summation is for all possible outcomes of the observation, Y, regardless of whether 
the forecast system can predict or not. The conditional expectation, or conditional mean, of the 
forecast given observation, Y, is given by: 

 µX|Y=E[X|Y]=Σx x pX|Y(x|y) (62) 
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Similarly, the conditional expectation of the observation, Y, given forecast, X, is given by: 

 µY|X=E[Y|X]=Σy y pY|X(y|x) (63) 

Note in Equations 62 and 63 that µX|Y and µY|X are conditioned on random variables Y and X, 
respectively. Being functions of Y and X, µX|Y and µY|X are random variables themselves.  

The centred second moment, or variance, of X is given by: 

𝜎𝜎𝑋𝑋2 = 𝑀𝑀[(𝑋𝑋 − 𝜇𝜇𝑋𝑋)2] = 𝑀𝑀[𝑋𝑋2] − 𝜇𝜇𝑋𝑋2 = Σ𝑥𝑥(𝑥𝑥 − 𝜇𝜇𝑋𝑋)2𝑝𝑝𝑋𝑋(𝑥𝑥) (64) 

Similarly, variance of Y is given by: 

𝜎𝜎𝑌𝑌2 = 𝑀𝑀[(𝑌𝑌 − 𝜇𝜇𝑌𝑌)2] = 𝑀𝑀[𝑌𝑌2] − 𝜇𝜇𝑌𝑌2 = Σ𝑦𝑦(𝑦𝑦 − 𝜇𝜇𝑌𝑌)2𝑝𝑝𝑌𝑌(𝑦𝑦) (65) 

The centred cross-moment, or covariance, between X and Y is given by: 

 𝑈𝑈𝑆𝑆𝑜𝑜[𝑋𝑋,𝑌𝑌] = 𝑀𝑀[(𝑋𝑋 − 𝜇𝜇𝑋𝑋)(𝑌𝑌 − 𝜇𝜇𝑌𝑌)] = Σ𝑥𝑥Σ𝑦𝑦(𝑥𝑥 − 𝜇𝜇𝑋𝑋)(𝑦𝑦 − 𝜇𝜇𝑌𝑌) 𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥, 𝑦𝑦) (66) 

Correlation, or Pearson correlation, between X and Y is given by: 

𝜌𝜌𝑋𝑋,𝑌𝑌 = 𝑈𝑈𝑆𝑆𝑜𝑜[𝑋𝑋,𝑌𝑌]/(𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌) (67) 

where σX and σY denote the standard deviations of X and Y, respectively. It is important to 
recognize that the above moments completely prescribe the bivariate normal and lognormal 
distributions and other commonly used two-parameter distributions such as bivariate gamma 
(Nagao and Kadoya, 1970; Iliopoulos et al., 2005) and Weibull (Lu and Bhattacharyya, 1990; 
Johnson et al., 1999), which are widely used in hydrological applications. Hence, if the forecast 
and observation are indeed a jointly IID random process, follow one of the parametric bivariate 
distributions above, and have sufficiently large samples (that is, experimental outcomes), 
verification should be a straightforward endeavour. 

B.3 Forecast attributes  

The mathematical expressions for the key attributes are given below for the single-valued 
forecast versus the verifying observation using the mean squared error (MSE) as the measure 
of accuracy. The same expressions also apply to probability forecasts with the Brier score (BS) 
as the accuracy measure. The attributes are grouped according to three different 
decompositions of the MSE. 

Mean bias, second-order bias and association 

The first decomposition expresses the MSE in terms of the contributions from mean bias, bias 
in standard deviation and strength of linear association (Murphy and Winkler, 1987; Nelson 
et al., 2010): 

𝑀𝑀𝑆𝑆𝑀𝑀 = 𝑀𝑀[(𝑋𝑋 − 𝑌𝑌)]2 = (𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑌𝑌)2 + (𝜎𝜎𝑋𝑋 − 𝜎𝜎𝑌𝑌)2 + 2𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌�1 − 𝜌𝜌𝑋𝑋,𝑌𝑌� (68) 

In Equation 68, the first term is the mean bias, or mean error (ME), squared, the second term 
is the bias in standard deviation squared and the third term represents the strength of 
association. If the marginal distributions of X and Y are identical, the first two terms vanish. 
The third term shows how linear correlation contributes to second-order accuracy. If the 
forecast is perfectly correlated, only the mean bias and the bias in standard deviation 
determine accuracy. As correlation decreases, the third term, and hence the MSE, increase. If 
the forecast is negatively correlated with the observation, the third term becomes larger than 
when the forecast has no correlation with the observation. 
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With Equation 68, one is now in a position to contrast MSE with the Kling–Gupta efficiency 
(KGE) (Gupta et al., 2009). The KGE is defined as: 

𝐾𝐾𝐾𝐾𝑀𝑀 = 1 − ��𝜌𝜌𝑋𝑋,𝑌𝑌 − 1�2 + �𝜇𝜇𝑋𝑋
𝜇𝜇𝑌𝑌
− 1�

2
+ �𝜎𝜎𝑋𝑋

𝜎𝜎𝑌𝑌
− 1�

2
    (69) 

As may be seen in Equation 69, KGE penalizes deficient linear association, relative mean error 
and relative error in centred second-order moment. Unlike MSE, however, KGE is not strictly 
proper. Hence, one may game forecasts and forecast systems to score well (or poorly) on KGE. 
The above may be illustrated via simple examples. Under Equation 69, white-noise forecasts 
with 𝜌𝜌𝑋𝑋,𝑌𝑌 = 0, 𝜇𝜇𝑋𝑋 = 𝜇𝜇𝑌𝑌 and 𝜎𝜎𝑋𝑋 = 𝜎𝜎𝑌𝑌, or forecast A, have a KGE of 0. Similarly, clairvoyant (but 
biased by a multiplicative factor) forecasts with 𝜌𝜌𝑋𝑋,𝑌𝑌 = 1, 𝜇𝜇𝑋𝑋 = �1 + √0.5�𝜇𝜇𝑌𝑌 and 𝜎𝜎𝑋𝑋 = �1 + √0.5�𝜎𝜎𝑌𝑌, 
or forecast B, also have a KGE of 0. Hence, against intuition, the two forecasts are of equal 
“goodness” according to KGE. Using Equation 68, it is easy to show that 𝑀𝑀𝑆𝑆𝑀𝑀𝐵𝐵 > 𝑀𝑀𝑆𝑆𝑀𝑀𝐴𝐴 if 𝑈𝑈𝐶𝐶𝑂𝑂 <
1 √3⁄  (≈ 0.58) and 𝑀𝑀𝑆𝑆𝑀𝑀𝐵𝐵 < 𝑀𝑀𝑆𝑆𝑀𝑀𝐴𝐴 otherwise, where 𝑀𝑀𝑆𝑆𝑀𝑀𝐴𝐴 and 𝑀𝑀𝑆𝑆𝑀𝑀𝐵𝐵 denote the MSE of forecast A 
and forecast B, respectively, and 𝑈𝑈𝐶𝐶𝑌𝑌 denotes the coefficient of variation of the observation 
(= 𝜎𝜎𝑌𝑌 𝜇𝜇⁄ 𝑌𝑌). In other words, if the predictand has a small/large variability relative to the mean, 
biases are more/less important than association, in agreement with intuition. Equation 69, on 
the other hand, gives 𝐾𝐾𝐾𝐾𝑀𝑀𝐴𝐴 = 𝐾𝐾𝐾𝐾𝑀𝑀𝐵𝐵 regardless of 𝑈𝑈𝐶𝐶𝑌𝑌. The above indicates that the same value 
of KGE does not, in general, mean the same level of forecast quality when comparing forecasts 
across different locations, seasons, flow regimes, and so on. Hence, if KGE is to be used for 
verification, it is recommended that it be used jointly with the MSE, its decomposition and the 
(R)MSE skill score. 

Reliability, resolution and uncertainty  

The CR decomposition expresses the MSE in terms of reliability (REL), resolution (RES) and 
uncertainty (UNC) as follows under the assumption of μX = μY:  

MSE = REL – RES + UNC = E[(X−Y)²] = EX [(μY|X − X)²] − EX [(μY|X − μY )²] + σY² (70) 

where EX[ ] indicates that the expectation is with respect to the forecast, X, and μY|X denotes 
the conditional expectation of the observation, Y, given the forecast, X. Note that μY|X is a 
function of the random variable, X, and hence a random variable itself.  

Figure 73 illustrates the terms in Equation 70. The circles connected by lines represent µY|X = x 
for selected experimental values of X (that is, forecast events) on the x-axis. The horizontal 
line indicates µY. The diagonal line represents y = x (that is, the observed outcome is the same 
as the forecast event). The histogram above the large box represents the distribution of the 
forecast, pX(x). The reliability component REL, which is contributed by the red shaded area, 
measures the squared deviations from the diagonal line weight-averaged by pX(x) (see the first 
term in Equation 69). The forecast is perfectly reliable (REL = 0) if all µY|X=x points fall on the 
diagonal line. 

The resolution component RES, which is contributed by the blue shaded area, measures the 
squared deviations of µY|X = x from the horizontal line representing µY, weight-averaged by pX(x) 
(see the second term in Equation 70). In the example shown in Figure 73, the forecast has 
positive resolution since µY|X = x shows sensitivity to x, indicating that the observed outcomes 
are different for different forecast events. If µY|X = x is the same for all forecast events, the 
forecast has no resolution (RES = 0). The maximum resolution for perfectly reliable forecasts 
is equal to σY², which would only be achieved if the forecast is perfectly accurate (MSE = 0). 
The MSE decreases as resolution increases. Hence, the forecasts must have good resolution to 
be accurate. The uncertainty component UNC is given by σy², representing the variability of 
the observation about its mean. Climatological forecast is perfectly reliable (REL = 0) but has 
no resolution (RES = 0), and hence the MSE is equal to the variability of the observation, σy². 
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Figure 74. Conceptual illustration of the CR decomposition of the MSE of the forecast, 

x, versus the observation, y   
Source: Adapted from Bradley et al. (2019) 

Type II conditional bias, discrimination and sharpness 

The LBR decomposition expresses the MSE in terms of type II conditional bias (T2B), 
discrimination (DIS) and sharpness (SHA) as follows under the assumption of μX = μY:  

MSE = T2B – DIS + SHA = E[(X − Y)²] = EY [(μX|Y − Y )²] − EY [(μX|Y − μX )²] + σX² (71) 

where EY indicates that the expectation is with respect to the observation, Y, and μX|Y denotes 
E[X|Y]. As with µY|X in Equation 70, μX|Y in Equation 71 is a function of the random variable, Y, 
and hence a random variable itself. 

Figure 74 is completely analogous to Figure 73 but illustrates the LBR decomposition. The large 
box is the same as in Figure 73. The circles connected by lines represent μX|Y = y for all different 
observed events. The vertical line indicates the mean of the forecast, µX. The histogram next 
to the box represents the marginal distribution of the observation, pY(y). If µX|Y = y falls on the 
diagonal line for all observed events, the forecast has no type II conditional bias (T2B = 0). 
The type II conditional bias component T2B is given by the squared deviations from the 
diagonal line weight-averaged by the marginal distribution pY(y) (see the first term in 
Equation 71) and is represented by the red shaded area.  

The discrimination component, DIS, which is indicated by the blue shaded area, measures the 
squared deviations of µX|Y = y from the vertical line µX weight-averaged by the marginal 
distribution pY(y) (see the second term in Equation 71). In the example shown in Figure 75, 
the forecast has positive discrimination; µX|Y = y increases as the observed event y increases, 
indicating that the forecasts are different for different observed events. The sharpness 
component SHA is represented by variance of the forecast, σX², which represents the 
variability of the forecast about its mean. An accurate forecast must have nonzero SHA to have 
positive DIS and small type II conditional bias. If the same forecast is always issued, the 
forecast has zero SHA, zero DIS and maximum type II conditional bias. 
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Figure 75. Conceptual illustration of the LBR decomposition 

Source: Adapted from Bradley et al. (2019) 
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APPENDIX C. LIST OF ACRONYMS 

BC Boundary condition 

BIAS Multiplicative bias 

BR Base rate 

BS Brier score 

BSS Brier skill score 

CDF Cumulative distribution function 

CORR Pearson correlation coefficient 

CR Calibration–resolution 

CRPS Continuous ranked probability score 

CRPSS Continuous ranked probability skill score 

CSI Critical success index 

DA Data assimilation 

DIS Discrimination 

DO Distributions-oriented 

DRB Delaware River Basin 

ECCC Environment and Climate Change Canada 

EnsPost Ensemble Postprocessor 

ERRIS Error Reduction and Representation in Stages (error model) 

ETS Equitable threat score 

EVS Ensemble Verification System 

FA False alarm 

FAR False alarm ratio 

FB Frequency bias 

FC Fraction correct 

GDPS Global Deterministic Prediction System 

GEFS Global Ensemble Forecast System 

GEPS Global Ensemble Prediction System 

H Hit 
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HEFS Hydrologic Ensemble Forecast Service 

HyFS Hydrological Forecasting System 

IC Initial condition 

IID Independent and identically distributed 

KGE Kling–Gupta efficiency 

LBR Likelihood–base rate 

M Miss 

MAE Mean absolute error 

MAP Mean areal precipitation 

MARFC Middle Atlantic River Forecast Center 

ME Mean error 

MEFP Meteorological Ensemble Forecast Processor 

MSE Mean squared error 

MSESS Mean squared error skill score 

NAEFS North American Ensemble Forecast System 

NAM North American Mesoscale Forecast System 

NCEP National Centers for Environmental Prediction 

NRC National Research Council 

NWM National Water Model 

NWP Numerical weather prediction 

NWS National Weather Service 

OHRFC Ohio River Forecast Center 

PDF Probability density function 

PIT Probability integral transform 

PMF Probability mass function 

POD Probability of detection 

POFD Probability of false detection 

POFO Probability of forecast of occurrence 

PSS Peirce’s skill score 

QPF Quantitative precipitation forecast 
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RDPS Regional Deterministic Prediction System 

REL Reliability 

RES Resolution 

RFC River Forecast Center 

RME Relative mean error 

RMSE Root mean squared error 

ROC Relative operating characteristic 

RPS Ranked probability score 

RPSS Ranked probability skill score 

RWsOS Rijkswaterstaat Operational System 

SAC Sacramento soil moisture accounting model 

SHA Sharpness 

SPH Système de Prévision Hydrologique 

SR Success ratio 

T2B Type II bias 

TN True negative 

UHG Unit hydrograph 

UNC Uncertainty 

UTRB Upper Trinity River Basin 

WMCN Water Management Centre of the Netherlands 

WWRP World Weather Research Programme  
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